Similarity Graph-correlation Reconstruction Network for unsupervised cross-modal hashing

被引:16
|
作者
Yao, Dan [1 ,2 ]
Li, Zhixin [1 ,2 ]
Li, Bo [1 ,2 ]
Zhang, Canlong [1 ,2 ]
Ma, Huifang [3 ]
机构
[1] Guangxi Normal Univ, Key Lab Educ Blockchain & Intelligent Technol, Minist Educ, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
[3] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal retrieval; Unsupervised cross-modal hashing; Similarity matrix; Graph rebasing; Similarity reconstruction;
D O I
10.1016/j.eswa.2023.121516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing cross-modal hash retrieval methods can simultaneously enhance retrieval speed and reduce storage space. However, these methods face a major challenge in determining the similarity metric between two modalities. Specifically, the accuracy of intra-modal and inter-modal similarity measurements is inadequate, and the large gap between modalities leads to semantic bias. In this paper, we propose a Similarity Graph-correlation Reconstruction Network (SGRN) for unsupervised cross-modal hashing. Particularly, the local relation graph rebasing module is used to filter out graph nodes with weak similarity and associate graph nodes with strong similarity, resulting in fine-grained intra-modal similarity relation graphs. The global relation graph reconstruction module is further strengthens cross-modal correlation and implements fine-grained similarity alignment between modalities. In addition, in order to bridge the modal gap, we combine the similarity representation of real-valued and hash features to design the intra-modal and inter-modal training strategies. SGRN conducted extensive experiments on two cross-modal retrieval datasets, and the experimental results effectively validated the superiority of the proposed method and significantly improved the retrieval performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Deep Hashing Similarity Learning for Cross-Modal Retrieval
    Ma, Ying
    Wang, Meng
    Lu, Guangyun
    Sun, Yajun
    IEEE ACCESS, 2024, 12 : 8609 - 8618
  • [42] Discriminative Supervised Hashing for Cross-Modal Similarity Search
    Yu, Jun
    Wu, Xiao-Jun
    Kittler, Josef
    IMAGE AND VISION COMPUTING, 2019, 89 : 50 - 56
  • [43] Discrete Sparse Hashing for Cross-Modal Similarity Search
    Wang, Lu
    Ma, Chao
    Tu, Enmei
    Yang, Jie
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 2018, 11304 : 256 - 267
  • [44] Hypergraph-Enhanced Hashing for Unsupervised Cross-Modal Retrieval via Robust Similarity Guidance
    Zhong, Fangming
    Chu, Chenglong
    Zhu, Zijie
    Chen, Zhikui
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3517 - 3527
  • [45] Deep Adaptively-Enhanced Hashing With Discriminative Similarity Guidance for Unsupervised Cross-Modal Retrieval
    Shi, Yufeng
    Zhao, Yue
    Liu, Xin
    Zheng, Feng
    Ou, Weihua
    You, Xinge
    Peng, Qinmu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 7255 - 7268
  • [46] Unsupervised deep hashing with multiple similarity preservation for cross-modal image-text retrieval
    Xiong, Siyu
    Pan, Lili
    Ma, Xueqiang
    Hu, Qinghua
    Beckman, Eric
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (10) : 4423 - 4434
  • [47] Local Graph Convolutional Networks for Cross-Modal Hashing
    Chen, Yudong
    Wang, Sen
    Lu, Jianglin
    Chen, Zhi
    Zhang, Zheng
    Huang, Zi
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1921 - 1928
  • [48] Collaborative Subspace Graph Hashing for Cross-modal Retrieval
    Zhang, Xiang
    Dong, Guohua
    Du, Yimo
    Wu, Chengkun
    Luo, Zhigang
    Yang, Canqun
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 213 - 221
  • [49] Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval
    Liang Xie
    Lei Zhu
    Guoqi Chen
    Multimedia Tools and Applications, 2016, 75 : 9185 - 9204
  • [50] Unsupervised multi-graph cross-modal hashing for large-scale multimedia retrieval
    Xie, Liang
    Zhu, Lei
    Chen, Guoqi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (15) : 9185 - 9204