Nonflammable dual-salt localized high-concentration electrolyte for graphite/LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries: Li plus solvation structure and interphase

被引:12
|
作者
Cao, Shuai [1 ]
Wen, Fanjue [1 ]
Ren, Xin [1 ]
Cao, Yuliang [2 ]
Ai, Xinping [2 ]
Xu, Fei [1 ,3 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Key Lab Hydraul Machinery Transients, Minist Educ, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China
[3] Contemporary Amperex Technol Ltd 21C LAB, 21C Innovat Lab, Yibin 352100, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonflammable electrolyte; Li plus solvation structure; Interphase compatibility; Thermodynamics; Kinetics; PHOSPHATE; STABILITY; GRAPHITE; LIPF6; SEI;
D O I
10.1016/j.jpowsour.2022.232392
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Trimethyl phosphate (TMP) is the most promising safe solvent for lithium-ion battery (LIB) electrolyte because of the nonflammability, oxidation stability and low cost, but its application is hindered by the incompatibility with the graphite anode. Herein, a nonflammable localized high-concentration electrolyte with ordinary concentra-tion (1 mol L-1) is developed for graphite/LiNi0.8Co0.1Mn0.1O2 (Gr/NCM811) LIBs with TMP/1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (TTE) binary solvents. The origin of the capacity decay is eluci-dated with a comprehensive investigation of the Li+ solvation structure and electrode/electrolyte interface. On this basis, a dual-salt strategy of lithium hexafluorophosphate (LiPF6)/lithium difluoro(oxalato)borate (LiDFOB) is employed, and a stable cycling of the Gr/NCM811 full cell is achieved with upper voltages of both 4.3 V and 4.6 V. The optimization of the nonflammable TMP/TTE electrolyte demonstrates that Li+ solvation structure and interphase are respectively the thermodynamic and kinetic factors for the side reactions of the electrolyte occurring at the electrode: the Li+ solvation structure determines the reduction and oxidation tolerances of the electrolyte in thermodynamics, while the interface determines the decomposition rate in kinetics.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Ionic Conductive Interface Boosting High Performance LiNi0.8Co0.1Mn0.1O2 for Lithium Ion Batteries
    Liu, Wen
    Li, Xifei
    Hao, Youchen
    Sari, Hirbod Maleki Kheimeh
    Qin, Jian
    Xiao, Wei
    Wang, Xiujuan
    Yang, Huijuan
    Li, Wenbin
    Kou, Liang
    Tian, Zhanyuan
    Shao, Le
    Zhang, Cheng
    Zhang, Jiujun
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3242 - 3252
  • [22] Thermal Runaway of Nonflammable Localized High-Concentration Electrolytes for Practical LiNi0.8Mn0.1Co0.1O2|Graphite-SiO Pouch Cells
    Wu, Yu
    Feng, Xuning
    Yang, Min
    Zhao, Chen-Zi
    Liu, Xiang
    Ren, Dongsheng
    Ma, Zhuang
    Lu, Languang
    Wang, Li
    Xu, Gui-Liang
    He, Xiangming
    Amine, Khalil
    Ouyang, Minggao
    ADVANCED SCIENCE, 2022, 9 (32)
  • [24] Cathode material LiNi0.8Co0.1Mn0.1O2/LaPO4 with high electrochemical performance for lithium-ion batteries
    Tong, Hui
    Dong, Pengyuan
    Zhang, Jiafeng
    Zheng, Junchao
    Yu, Wanjing
    Wei, Kai
    Zhang, Bao
    Liu, Zhimin
    Chu, Dewei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 764 : 44 - 50
  • [25] Effects of Degradation on the Thermal Stability LiNi0.8Co0.1Mn0.1O2/Graphite Batteries
    Inoue, Takao
    Komagata, Shogo
    Itou, Yuichi
    Kondo, Hiroki
    ELECTROCHEMISTRY, 2022, 90 (11)
  • [26] Glass ceramic coating on LiNi0.8Co0.1Mn0.1O2 cathode for Li-ion batteries
    Hyeong Seop Kang
    Palanisamy Santhoshkumar
    Jae Woo Park
    Gyu Sang Sim
    Murugan Nanthagopal
    Chang Woo Lee
    Korean Journal of Chemical Engineering, 2020, 37 : 1331 - 1339
  • [27] Use of Zirconium Dual-Modification on the LiNi0.8Co0.1Mn0.1O2 Cathode for Improved Electrochemical Performances of Lithium-Ion Batteries
    Jo, Sung-Joo
    Hwang, Do-Young
    Lee, Seung-Hwan
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (04): : 3693 - 3700
  • [28] Significance of electrolyte additive molecule structure in stabilizing interphase in LiNi0.8Co0.1Mn0.1O2/artificial graphite pouch cells at high temperature
    Zhao, Huajun
    Hu, Shiguang
    Fan, Yanchen
    Wang, Qingrong
    Li, Jianding
    Yuan, Mingman
    Ma, Xinzhi
    Wang, Jun
    Shao, Huaiyu
    Deng, Yonghong
    ENERGY STORAGE MATERIALS, 2024, 65
  • [29] Study on Preparation and Performance of LiNi0.8Co0.1Mn0.1O2 as cathode materials for lithium ion batteries
    Wang, Mingming
    Shi, Fangchang
    Yang, Hongzhou
    Gao, Cunsi Sun Yanmin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (10): : 9971 - 9980
  • [30] Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries
    Sim, Seong-Ju
    Lee, Seung-Hwan
    Jin, Bong-Soo
    Kim, Hyun-Soo
    SCIENTIFIC REPORTS, 2020, 10 (01)