Convergence rate analysis of proximal iteratively reweighted l1 methods for lp regularization problems

被引:0
|
作者
Wang, Hao [1 ]
Zeng, Hao [1 ]
Wang, Jiashan [2 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Kurdyka-Lojasiewicz property; Iteratively reweighted algorithm; l(p) regularization; Convergence rate; MINIMIZATION; ALGORITHM; NONCONVEX; SPARSITY;
D O I
10.1007/s11590-022-01907-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we focus on the local convergence rate analysis of the proximal iteratively reweighted l(1) algorithms for solving l(p) regularization problems, which are widely applied for inducing sparse solutions. We show that if the KurdykaLojasiewicz property is satisfied, the algorithm converges to a unique first-order stationary point; furthermore, the algorithm has local linear convergence or local sublinear convergence. The theoretical results we derived are much stronger than the existing results for iteratively reweighted l(1) algorithms.
引用
收藏
页码:413 / 435
页数:23
相关论文
共 50 条
  • [21] Infrared Small Target Detection with Total Variation and Reweighted l1 Regularization
    Fang, Houzhang
    Chen, Min
    Liu, Xiyang
    Yao, Shoukui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [22] AN l1 - lp DC REGULARIZATION METHOD FOR COMPRESSED SENSING
    Cao, Wenhe
    Ku, Hong-Kun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 1889 - 1901
  • [23] Convergence rate analysis of proximal gradient methods with applications to composite minimization problems
    Sahu, D. R.
    Yao, J. C.
    Verma, M.
    Shukla, K. K.
    OPTIMIZATION, 2021, 70 (01) : 75 - 100
  • [24] Control proximal gradient algorithm for image l1 regularization
    El Mouatasim, Abdelkrim
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (06) : 1113 - 1121
  • [25] Distributed ISAR imaging based on convolution and total variation reweighted l1 regularization
    Fu, Xiaoyao
    Wang, Yu
    He, Tingting
    Tian, Biao
    Xu, Shiyou
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4653 - 4671
  • [26] Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements
    Xie, Wenhao
    Deng, Yong
    Wang, Kan
    Yang, Xiaoquan
    Luo, Qingming
    OPTICS LETTERS, 2014, 39 (14) : 4148 - 4151
  • [27] ITERATIVELY REWEIGHTED L1-FITTING FOR MODEL-INDEPENDENT OUTLIER REMOVAL AND REGULARIZATION IN DIFFUSION MRI
    Tobisch, Alexandra
    Stoecker, Tony
    Groeschel, Samuel
    Schultz, Thomas
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 911 - 914
  • [28] Reweighted l1 Algorithm for Robust Principal Component Analysis
    Hoai Minh Le
    Vo Xuanthanh
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 133 - 142
  • [29] Sparse hyperspectral unmixing combined L1/2 norm and reweighted total variation regularization
    Li, Yan
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [30] L1/2 Regularization: Convergence of Iterative Half Thresholding Algorithm
    Zeng, Jinshan
    Lin, Shaobo
    Wang, Yao
    Xu, Zongben
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (09) : 2317 - 2329