CrossFormer: Multi-scale cross-attention for polyp segmentation

被引:3
|
作者
Chen, Lifang [1 ]
Ge, Hongze [2 ]
Li, Jiawei [3 ]
机构
[1] JiangNan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Jiangsu, Peoples R China
[2] JiangNan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Jiangsu, Peoples R China
[3] JiangNan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi, Jiangsu, Peoples R China
关键词
channel enhancement; colorectal cancer; cross-attention; multi scale; polyp segmentation; VALIDATION;
D O I
10.1049/ipr2.12875
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Colonoscopy is a common method for the early detection of colorectal cancer (CRC). The segmentation of colonoscopy imagery is valuable for examining the lesion. However, as colonic polyps have various sizes and shapes, and their morphological characteristics are similar to those of mucosa, it is difficult to segment them accurately. To address this, a novel neural network architecture called CrossFormer is proposed. CrossFormer combines cross-attention and multi-scale methods, which can achieve high-precision automatic segmentation of the polyps. A multi-scale cross-attention module is proposed to enhance the ability to extract context information and learn different features. In addition, a novel channel enhancement module is used to focus on the useful channel information. The model is trained and tested on the Kvasir and CVC-ClinicDB datasets. Experimental results show that the proposed model outperforms most existing polyps segmentation methods.
引用
收藏
页码:3441 / 3452
页数:12
相关论文
共 50 条
  • [41] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119
  • [42] A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation
    Jiang, Yun
    Yao, Huixia
    Wu, Chao
    Liu, Wenhuan
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 16
  • [43] Multi-scale hand segmentation method based on attention mechanism
    Zhou, Wenqing
    Dai, Sumin
    Wang, Yangpin
    Wang, Wenrun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (11) : 1506 - 1518
  • [44] Adaptive multi-scale dual attention network for semantic segmentation
    Wang, Weizhen
    Wang, Suyu
    Li, Yue
    Jin, Yishu
    NEUROCOMPUTING, 2021, 460 : 39 - 49
  • [45] META-Unet: Multi-Scale Efficient Transformer Attention Unet for Fast and High-Accuracy Polyp Segmentation
    Wu, Huisi
    Zhao, Zebin
    Wang, Zhaoze
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (03) : 4117 - 4128
  • [46] CASF-Net: Cross-attention and cross-scale fusion network for medical image segmentation
    Zheng, Jianwei
    Liu, Hao
    Feng, Yuchao
    Xu, Jinshan
    Zhao, Liang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 229
  • [47] A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation
    Wang, Shubin
    Chen, Yuanyuan
    Yi, Zhang
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [48] Segmentation of aerial image with multi-scale feature and attention model
    Ning Q.
    Hu S.-Y.
    Lei Y.-J.
    Chen B.-C.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (06): : 1218 - 1224
  • [49] Multi-scale features and attention guided for brain tumor segmentation
    Wang, Zekun
    Zou, Yanni
    Chen, Hongyu
    Liu, Peter X.
    Chen, Junyu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [50] MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123