A path planning approach for unmanned surface vehicles based on dynamic and fast Q-learning

被引:28
|
作者
Hao, Bing [1 ]
Du, He [1 ]
Yan, Zheping [2 ]
机构
[1] Qiqihar Univ, Coll Comp & Control Engn, Qiqihar, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin, Peoples R China
关键词
Unmanned surface vehicles; Path planning; Q-learning; Offline; Online; ALGORITHM; DESIGN;
D O I
10.1016/j.oceaneng.2023.113632
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Path planning is a critical issue for unmanned surface vehicles (USVs), and an effective path-planning algorithm enables USVs to accomplish the mission. In this paper, a novel algorithm called dynamic and fast Q-learning (DFQL) to solve the path planning problem for USV in partially known maritime environments is proposed, which combines Q-learning with artificial potential field (APF) to initialize the Q-table to provide a priori knowledge from the environment to USV. To accelerate the convergence of Q-learning to the optimal solution and avoid USV's behavior of walking randomly in the early stage of exploration, the static and dynamic rewards are proposed to motivate the USV to move toward the target. Moreover, the performance of the proposed al-gorithm is verified with offline and online modes for USV in different environmental conditions. By comparing with the existing methods, it shows that the proposed approach is effective for path planning of USV.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Review of Path Planning for Unmanned Surface Vehicles
    Xing, Bowen
    Yu, Manjiang
    Liu, Zhenchong
    Tan, Yinchao
    Sun, Yue
    Li, Bing
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (08)
  • [22] Optimal path planning of unmanned surface vehicles
    Singh, Yogang
    Sharma, Sanjay
    Hatton, Daniel
    Sutton, Robert
    INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2018, 47 (07): : 1325 - 1334
  • [23] A Path Planning Algorithm for UAV Based on Improved Q-Learning
    Yan, Chao
    Xiang, Xiaojia
    2018 2ND INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS), 2018, : 46 - 50
  • [24] A Locking Sweeping Method Based Path Planning for Unmanned Surface Vehicles in Dynamic Maritime Environments
    Zhuang, Jiayuan
    Luo, Jing
    Liu, Yuanchang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (11) : 1 - 32
  • [25] Path planning of mobile robots with Q-learning
    Cetin, Halil
    Durdu, Akif
    2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, : 2162 - 2165
  • [26] Heuristic Q-learning based on experience replay for three-dimensional path planning of the unmanned aerial vehicle
    Xie, Ronglei
    Meng, Zhijun
    Zhou, Yaoming
    Ma, Yunpeng
    Wu, Zhe
    SCIENCE PROGRESS, 2020, 103 (01)
  • [27] A Dynamic Hidden Forwarding Path Planning Method Based on Improved Q-Learning in SDN Environments
    Chen, Yun
    Lv, Kun
    Hu, Changzhen
    SECURITY AND COMMUNICATION NETWORKS, 2018,
  • [28] Dynamic Path Planning for Unmanned Surface Vehicles with a Modified Neuronal Genetic Algorithm
    Hamid, Nur
    Dharmawan, Willy
    Nambo, Hidetaka
    APPLIED SYSTEM INNOVATION, 2023, 6 (06)
  • [29] Local Path Planning: Dynamic Window Approach With Q-Learning Considering Congestion Environments for Mobile Robot
    Kobayashi, Masato
    Zushi, Hiroka
    Nakamura, Tomoaki
    Motoi, Naoki
    IEEE ACCESS, 2023, 11 : 96733 - 96742
  • [30] Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance
    Sonny, Amala
    Yeduri, Sreenivasa Reddy
    Cenkeramaddi, Linga Reddy
    APPLIED SOFT COMPUTING, 2023, 147