Higher hydrogen fractions in dielectric polymers boost self-healing in electrical capacitors

被引:3
|
作者
Chaban, Vitaly V. [1 ]
Andreeva, Nadezhda A. [2 ]
机构
[1] Yerevan State Univ, Yerevan 0025, Armenia
[2] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
10.1039/d3cp05355e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrical capacitors are omnipresent in modern electronic devices, in which they swiftly release large portions of energy on demand. The capacitors may suffer from arc discharges due to local structural heterogeneities in their components and inappropriate exploitation practices. High energies of the arc discharge are transferred as phonons to the electrode and dielectric film, which burn out locally. The dielectric breakdown takes place. The complete burnout leads to the isolation of the failed region and the capacitor's self-healing. The emerging soot can form a semiconducting channel and damage the capacitor. The efficiency of self-healing depends on the dielectric properties of the soot and its amount. We employ reactive molecular dynamics simulations to reveal the regularities of the high-temperature polymer destruction and record by-products emerging during this process. We found the formation of multiple volatile low-molecular compounds and contaminated quantum carbon dots (CQD) designated as soot. The percentage of carbon in soot is higher compared to the polymer. Furthermore, the CQD contains numerous unsaturated C-C bonds and aromatic C6-rings suggesting an enhanced electrical conductivity. The size of the CQD depends on the available volume, i.e., on the spatial scale of the dielectric breakdown. The elemental composition of the soot is unique for each polymer. Polypropylene undergoes the most efficient self-healing thanks to containing a large molar fraction of hydrogen atoms. The results are addressed to the experts in electrical engineering and polymer fine-tuning. Specific chemical compositions of dielectric polymers favor capacitor durabilities.
引用
收藏
页码:3184 / 3196
页数:13
相关论文
共 50 条
  • [31] Introduction: self-healing polymers and composites
    Sottos, Nancy
    White, Scott
    Bond, Ian
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (13) : 347 - 348
  • [32] SELF-HEALING MECHANISM OF CRACKS IN POLYMERS
    MALINSKI.YM
    PROKOPEN.VV
    KARGIN, VA
    DOKLADY AKADEMII NAUK SSSR, 1969, 189 (03): : 568 - &
  • [33] Hyperbranched polyisobutylenes for self-healing polymers
    Doehler, D.
    Zare, P.
    Binder, W. H.
    POLYMER CHEMISTRY, 2014, 5 (03) : 992 - 1000
  • [34] Design and synthesis of self-healing polymers
    ZHANG MingQiu* & RONG MinZhi Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
    DSAPM Lab
    Science China(Chemistry), 2012, (05) : 647 - 675
  • [35] Mechanoresponsive polymers for self-healing applications
    Nagamani, Chikkannagari
    Liu, Huiying
    Moore, Jeffery
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [36] Preparation of microcapsules for self-healing polymers
    Czeller, Anna
    Czigany, Tibor
    MATERIALS SCIENCE, TESTING AND INFORMATICS VI, 2013, 729 : 205 - 209
  • [37] Polymers & plastics Self-healing hydrogels
    King, Anthony
    CHEMISTRY & INDUSTRY, 2012, 76 (04) : 13 - 13
  • [38] Design and synthesis of self-healing polymers
    MingQiu Zhang
    MinZhi Rong
    Science China Chemistry, 2012, 55 : 648 - 676
  • [39] Self-Healing Supramolecular Polymers In Action
    van Gemert, Gaby M. L.
    Peeters, Joris W.
    Sontjens, Serge H. M.
    Janssen, Henk M.
    Bosman, Anton W.
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2012, 213 (02) : 234 - 242
  • [40] Toward self-healing semiconducting polymers
    Schroeder, Bob
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249