FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON CROSS-DOMAIN SPECTRAL SEMANTIC RELATION TRANSFORMER

被引:3
|
作者
Cao, Mengxin [1 ]
Zhao, Guixin
Dong, Aimei
Lv, Guohua
Guo, Ying
Dong, Xiangjun
机构
[1] Qilu Univ Technol, Shandong Comp Sci Ctr, Key Lab Comp Power Network & Informat Secur, Minist Educ,Shandong Acad Sci, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral images classification; few-shot learning; cross-domain; transformers;
D O I
10.1109/ICIP49359.2023.10222564
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practical hyperspectral image (HSI) classification tasks, we often encounter the problems of few-shot classification and domain misalignment between source domains and target domains. To solve this classification paradigm, a meta-learning method of few-shot learning (FSL) is usually used. However, most existing FSL methods address the problem for domain alignment and neglect the exploration of semantic relationships of objects across domains. In this paper, we propose the cross-domain spectral semantic transformer FSL (SSTFSL), which can fully extract semantic features and spectral detail features for the cross-domain few-shot HSI classification task. Specifically, the multi-head self-attention (MSA) mechanism with enhancement process (EP) of the transformer is used to map out semantically relevant local regions and can enhance the ability of the model to distinguish subtle feature differences in the spectrum. In addition, the matching degree of different branches is computed by relational network learning, which ultimately enables cross-domain few-shot HSI classification. Through extensive experiments, we evaluate the classification performance of SSTFSL on HSI datasets. The results demonstrate that SSTFSL outperforms existing FSL methods and deep learning methods on HSI classification.
引用
收藏
页码:1375 / 1379
页数:5
相关论文
共 50 条
  • [41] SAR Image Classification Using Few-shot Cross-domain Transfer Learning
    Rostami, Mohammad
    Kolouri, Soheil
    Eaton, Eric
    Kim, Kyungnam
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 907 - 915
  • [42] Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [43] SPECTRAL MASKED AUTOENCODER FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION
    Feng, Pengming
    Wang, Kaihan
    Guan, Jian
    He, Guangjun
    Jin, Shichao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5041 - 5044
  • [44] Learning Cross-Image Object Semantic Relation in Transformer for Few-Shot Fine-Grained Image Classification
    Zhang, Bo
    Yuan, Jiakang
    Li, Baopu
    Chen, Tao
    Fan, Jiayuan
    Shi, Botian
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2135 - 2144
  • [45] Spectral Decomposition and Transformation for Cross-domain Few-shot Learning
    Liu, Yicong
    Zou, Yixiong
    Li, Ruixuan
    Li, Yuhua
    NEURAL NETWORKS, 2024, 179
  • [46] Spectral-Spatial Domain Attention Network for Hyperspectral Image Few-Shot Classification
    Zhang, Zhongqiang
    Gao, Dahua
    Liu, Danhua
    Shi, Guangming
    REMOTE SENSING, 2024, 16 (03)
  • [47] Deep Relation Network for Hyperspectral Image Few-Shot Classification
    Gao, Kuiliang
    Liu, Bing
    Yu, Xuchu
    Qin, Jinchun
    Zhang, Pengqiang
    Tan, Xiong
    REMOTE SENSING, 2020, 12 (06)
  • [48] Perspectives of Calibrated Adaptation for Few-Shot Cross-Domain Classification
    Kong, Dechen
    Yang, Xi
    Wang, Nannan
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2410 - 2421
  • [49] ProD: Prompting-to-disentangle Domain Knowledge for Cross-domain Few-shot Image Classification
    Ma, Tianyi
    Sun, Yifan
    Yang, Zongxin
    Yang, Yi
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19754 - 19763
  • [50] Adversarial Feature Augmentation for Cross-domain Few-Shot Classification
    Hu, Yanxu
    Ma, Andy J.
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 20 - 37