A comparison of different machine learning models for landslide susceptibility mapping in Rize (Türkiye)

被引:0
|
作者
Bilgilioglu, Hacer [1 ]
机构
[1] Aksaray Univ, Fac Engn, Dept Geol Engn, TR-68100 Aksaray, Turkiye
来源
BALTICA | 2023年 / 36卷 / 02期
关键词
landslide; susceptibility; machine learning; Rize; XGBoost; random forest (RF); ANALYTICAL HIERARCHY PROCESS; SUPPORT VECTOR MACHINES; FREQUENCY RATIO; 3; GORGES; AREA; MULTICRITERIA; ALGORITHMS; HIMALAYAN; PROVINCE; SYSTEM;
D O I
10.5200/baltica.2023.2.3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The main purpose of this study was to compare the performance and validation of six machine learning models (extreme gradient boosting, random forest, artificial neural network, support vector machine, C4.5 decision tree, and naive Bayes) in landslide susceptibility modelling. The province of Rize, which has the highest rate of landslide events in Turkiye, was chosen as the study area. The conditioning factors (distance to roads, lithology, drainage density, slope, topographic wetness index (TWI), soil depth, distance to rivers, land use, NDVI, plan curvature, elevation, aspect, profile curvature) affecting the landslide were determined using the ReliefF method. A total of 516 landslides were identified for creating models, comparing performance, and validating results. The performance and validation of the models were determined by the receiver operating characteristics (ROC), sensitivity, specificity, accuracy, and kappa index. The results show that the XGBoost model outperforms the other five machine learning models in terms of accuracy and performance and is the most effective model for generating landslide susceptibility maps in Rize (Turkiye).
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [31] Recent Developments in Machine Learning Applications in Landslide Susceptibility Mapping
    Lun, Na Kai
    Liew, Mohd Shahir
    Matori, Abdul Nasir
    Zawawi, Noor Amila Wan Abdullah
    13TH IMT-GT INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS AND THEIR APPLICATIONS (ICMSA2017), 2017, 1905
  • [32] Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
    Ado, Moziihrii
    Amitab, Khwairakpam
    Maji, Arnab Kumar
    Jasinska, Elzbieta
    Gono, Radomir
    Leonowicz, Zbigniew
    Jasinski, Michal
    REMOTE SENSING, 2022, 14 (13)
  • [33] Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping
    Natan Micheletti
    Loris Foresti
    Sylvain Robert
    Michael Leuenberger
    Andrea Pedrazzini
    Michel Jaboyedoff
    Mikhail Kanevski
    Mathematical Geosciences, 2014, 46 : 33 - 57
  • [34] Submarine Landslide Susceptibility and Spatial Distribution Using Different Unsupervised Machine Learning Models
    Du, Xing
    Sun, Yongfu
    Song, Yupeng
    Xiu, Zongxiang
    Su, Zhiming
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [35] Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey
    Akinci, Halil
    Zeybek, Mustafa
    NATURAL HAZARDS, 2021, 108 (02) : 1515 - 1543
  • [36] Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models
    Yu, Haiwei
    Pei, Wenjie
    Zhang, Jingyi
    Chen, Guangsheng
    REMOTE SENSING, 2023, 15 (07)
  • [37] A Comparative Assessment of Machine Learning Models for Landslide Susceptibility Mapping in the Rugged Terrain of Northern Pakistan
    Shahzad, Naeem
    Ding, Xiaoli
    Abbas, Sawaid
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [38] Landslide Susceptibility Mapping Methods Coupling with Statistical Methods, Machine Learning Models and Clustering Algorithms
    Wang Q.
    Xiong J.
    Cheng W.
    Cui X.
    Pang Q.
    Liu J.
    Chen W.
    Tang H.
    Song N.
    Journal of Geo-Information Science, 2024, 26 (03) : 620 - 637
  • [39] A Novel Heterogeneous Ensemble Framework Based on Machine Learning Models for Shallow Landslide Susceptibility Mapping
    Tang, Haozhe
    Wang, Changming
    An, Silong
    Wang, Qingyu
    Jiang, Chenglin
    REMOTE SENSING, 2023, 15 (17)
  • [40] Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey
    Halil Akinci
    Mustafa Zeybek
    Natural Hazards, 2021, 108 : 1515 - 1543