A comparison of different machine learning models for landslide susceptibility mapping in Rize (Türkiye)

被引:0
|
作者
Bilgilioglu, Hacer [1 ]
机构
[1] Aksaray Univ, Fac Engn, Dept Geol Engn, TR-68100 Aksaray, Turkiye
来源
BALTICA | 2023年 / 36卷 / 02期
关键词
landslide; susceptibility; machine learning; Rize; XGBoost; random forest (RF); ANALYTICAL HIERARCHY PROCESS; SUPPORT VECTOR MACHINES; FREQUENCY RATIO; 3; GORGES; AREA; MULTICRITERIA; ALGORITHMS; HIMALAYAN; PROVINCE; SYSTEM;
D O I
10.5200/baltica.2023.2.3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The main purpose of this study was to compare the performance and validation of six machine learning models (extreme gradient boosting, random forest, artificial neural network, support vector machine, C4.5 decision tree, and naive Bayes) in landslide susceptibility modelling. The province of Rize, which has the highest rate of landslide events in Turkiye, was chosen as the study area. The conditioning factors (distance to roads, lithology, drainage density, slope, topographic wetness index (TWI), soil depth, distance to rivers, land use, NDVI, plan curvature, elevation, aspect, profile curvature) affecting the landslide were determined using the ReliefF method. A total of 516 landslides were identified for creating models, comparing performance, and validating results. The performance and validation of the models were determined by the receiver operating characteristics (ROC), sensitivity, specificity, accuracy, and kappa index. The results show that the XGBoost model outperforms the other five machine learning models in terms of accuracy and performance and is the most effective model for generating landslide susceptibility maps in Rize (Turkiye).
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [1] COMPARISON OF DIFFERENT MACHINE LEARNING MODELS FOR LANDSLIDE SUSCEPTIBILITY MAPPING
    Yi, Yaning
    Zhang, Zhijie
    Zhang, Wanchang
    Xu, Chi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9318 - 9321
  • [2] Essential insights into decision mechanism of landslide susceptibility mapping based on different machine learning models
    Sun, Deliang
    Ding, Yuekai
    Zhang, Jialan
    Wen, Haijia
    Wang, Yue
    Xu, Jiahui
    Zhou, Xinzhi
    Liu, Rui
    GEOCARTO INTERNATIONAL, 2022,
  • [3] Spatial prediction and mapping of landslide susceptibility using machine learning models
    Chen, Yu
    NATURAL HAZARDS, 2025,
  • [4] Assessing and mapping landslide susceptibility using different machine learning methods
    Orhan, Osman
    Bilgilioglu, Suleyman Sefa
    Kaya, Zehra
    Ozcan, Adem Kursat
    Bilgilioglu, Hacer
    GEOCARTO INTERNATIONAL, 2022, 37 (10) : 2795 - 2820
  • [5] Feature elimination and comparison of machine learning algorithms in landslide susceptibility mapping
    Jennifer, Jesudasan Jacinth
    ENVIRONMENTAL EARTH SCIENCES, 2022, 81 (20)
  • [6] Feature elimination and comparison of machine learning algorithms in landslide susceptibility mapping
    Jesudasan Jacinth Jennifer
    Environmental Earth Sciences, 2022, 81
  • [7] Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping
    Zhang, Tingyu
    Li, Yanan
    Wang, Tao
    Wang, Huanyuan
    Chen, Tianqing
    Sun, Zenghui
    Luo, Dan
    Li, Chao
    Han, Ling
    GEOSCIENCE LETTERS, 2022, 9 (01)
  • [8] Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping
    Tingyu Zhang
    Yanan Li
    Tao Wang
    Huanyuan Wang
    Tianqing Chen
    Zenghui Sun
    Dan Luo
    Chao Li
    Ling Han
    Geoscience Letters, 9
  • [9] Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan
    Aslam, Bilal
    Zafar, Adeel
    Khalil, Umer
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2022,
  • [10] Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Zheng, Ying
    Zhou, Yulong
    Daud, Hamza
    REMOTE SENSING, 2023, 15 (19)