Utilizing a projection neural network to convex quadratic multi-objective programming problems

被引:1
|
作者
Jahangiri, Mohammadreza [1 ]
Nazemi, Alireza [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POB 3619995161-316, Shahrood, Iran
关键词
convergence; convex non-linear programming problem; multi-objective optimization problem; neural networks; Pareto optimal solution; stability; OPTIMIZATION; ALGORITHM; DECOMPOSITION; SPACE; MODEL; SET;
D O I
10.1002/acs.3603
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a projection neural network model for solving convex quadratic multi-objective optimization problem (CQMOP). The CQMOP is first converted into an equivalent convex nonlinear programming problem by the means of the weighted sum method, where the Pareto optimal solutions are calculated via different values of weights. A neural network model is then constructed for solving the obtained convex problem. It is shown that the presented neural network is stable in the sense of Lyapunov and is globally convergent. Simulation results are given to illustrate the global convergence and performance of the suggested model. Both theoretical and numerical approaches are studied. Numerical results are in good agreement with the proved theoretical concepts.
引用
收藏
页码:1847 / 1865
页数:19
相关论文
共 50 条