Self-Supervised RF Signal Representation Learning for NextG Signal Classification With Deep Learning

被引:12
|
作者
Davaslioglu, Kemal [1 ,2 ]
Boztas, Serdar [1 ,2 ]
Ertem, Mehmet Can [1 ,2 ]
Sagduyu, Yalin E. [3 ]
Ayanoglu, Ender [4 ]
机构
[1] Univ Tech Serv Inc, Dept Appl Res, Greenbelt, MD 20770 USA
[2] Univ Tech Serv Inc, Engn Div, Greenbelt, MD 20770 USA
[3] Virginia Tech, Natl Secur Inst, Arlington, VA 22203 USA
[4] Univ Calif Irvine, Ctr Pervas Commun & Comp, Irvine, CA 92697 USA
关键词
Task analysis; Wireless communication; Modulation; Wireless sensor networks; Radio frequency; Signal to noise ratio; Semantics; Automatic modulation recognition; wireless signal classification; contrastive learning; deep learning; self-supervised learning; spectrum awareness;
D O I
10.1109/LWC.2022.3217292
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning (DL) finds rich applications in the wireless domain to improve spectrum awareness. Typically, DL models are either randomly initialized following a statistical distribution or pretrained on tasks from other domains in the form of transfer learning without accounting for the unique characteristics of wireless signals. Self-supervised learning (SSL) enables the learning of useful representations from Radio Frequency (RF) signals themselves even when only limited training data samples with labels are available. We present a self-supervised RF signal representation learning method and apply it to the automatic modulation recognition (AMR) task by specifically formulating a set of transformations to capture the wireless signal characteristics. We show that the sample efficiency (the number of labeled samples needed to achieve a certain performance) of AMR can be significantly increased (almost an order of magnitude) by learning signal representations with SSL. This translates to substantial time and cost savings. Furthermore, SSL increases the model accuracy compared to the state-of-the-art DL methods and maintains high accuracy when limited training data is available.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 50 条
  • [21] Learning Representation for Multitask Learning Through Self-supervised Auxiliary Learning
    Shin, Seokwon
    Do, Hyungrok
    Son, Youngdoo
    COMPUTER VISION - ECCV 2024, PT LXXX, 2025, 15138 : 241 - 258
  • [22] Self-supervised Representation Learning on Document Images
    Cosma, Adrian
    Ghidoveanu, Mihai
    Panaitescu-Liess, Michael
    Popescu, Marius
    DOCUMENT ANALYSIS SYSTEMS, 2020, 12116 : 103 - 117
  • [23] Self-Supervised Learning for Specified Latent Representation
    Liu, Chicheng
    Song, Libin
    Zhang, Jiwen
    Chen, Ken
    Xu, Jing
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (01) : 47 - 59
  • [24] Self-Supervised Relational Reasoning for Representation Learning
    Patacchiola, Massimiliano
    Storkey, Amos
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [25] Self-Supervised Speech Representation Learning: A Review
    Mohamed, Abdelrahman
    Lee, Hung-yi
    Borgholt, Lasse
    Havtorn, Jakob D.
    Edin, Joakim
    Igel, Christian
    Kirchhoff, Katrin
    Li, Shang-Wen
    Livescu, Karen
    Maaloe, Lars
    Sainath, Tara N.
    Watanabe, Shinji
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (06) : 1179 - 1210
  • [26] Distilling Localization for Self-Supervised Representation Learning
    Zhao, Nanxuan
    Wu, Zhirong
    Lau, Rynson W. H.
    Lin, Stephen
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10990 - 10998
  • [27] Adaptive Self-Supervised Graph Representation Learning
    Gong, Yunchi
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 254 - 259
  • [28] Context Autoencoder for Self-supervised Representation Learning
    Chen, Xiaokang
    Ding, Mingyu
    Wang, Xiaodi
    Xin, Ying
    Mo, Shentong
    Wang, Yunhao
    Han, Shumin
    Luo, Ping
    Zeng, Gang
    Wang, Jingdong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 132 (1) : 208 - 223
  • [29] SELF-SUPERVISED REPRESENTATION LEARNING FOR ULTRASOUND VIDEO
    Jiao, Jianbo
    Droste, Richard
    Drukker, Lior
    Papageorghiou, Aris T.
    Noble, J. Alison
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1847 - 1850
  • [30] Context Autoencoder for Self-supervised Representation Learning
    Xiaokang Chen
    Mingyu Ding
    Xiaodi Wang
    Ying Xin
    Shentong Mo
    Yunhao Wang
    Shumin Han
    Ping Luo
    Gang Zeng
    Jingdong Wang
    International Journal of Computer Vision, 2024, 132 : 208 - 223