DR-CIML: Few-shot Object Detection via Base Data Resampling and Cross-iteration Metric Learning

被引:1
|
作者
Cao, Guoping [1 ]
Zhou, Wei [2 ]
Yang, Xudong [3 ]
Zhu, Feijia [3 ]
Chai, Lin [1 ,4 ]
机构
[1] Southeast Univ, Sch Automation, Key Lab Measurement & Control Complex Syst Engn, Nanjing, Peoples R China
[2] Sun Yat sen Univ, Sch Intelligent Syst Engn, Shenzhen, Peoples R China
[3] Walvis Intelligent Technol Co Ltd, Shenzhen R&D Ctr, Nanjing, Peoples R China
[4] Southeast Univ, Sch Automation, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1080/08839514.2023.2175116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the problems of difficult data collection and labor-intensive manual annotation, few-shot object detection (FSOD) has gained wide attention. Although current transfer-learning-based detection methods outperform meta-learning-based methods, their data organization fails to fully utilize the diversity of the source domain data. In view of this, Data Resampling (DR) organization is proposed to fine-tune the network, which can be employed as a component of any model and dataset without additional inference overhead. In addition, in order to improve the generalization of the model, a Cross-Iteration Metric-Learning (CIML) branch is embedded in the few-shot object detector, thus actively improving intra-category feature propinquity and inter-category feature discrimination. Our generic DR-CIML approach obtained competitive scores in extensive comparative experiments. The nAP50 performance on PASCAL VOC improved by up to 6.3 points, and the bAP50 performance reached 81.0, surpassing the base stage model (80.8) for the first time. The nAP75 performance on MS COCO improved by up to 1.6 points.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Few-Shot Object Detection via Association and DIscrimination
    Cao, Yuhang
    Wang, Jiaqi
    Jin, Ying
    Wu, Tong
    Chen, Kai
    Liu, Ziwei
    Lin, Dahua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [12] Few-Shot Object Detection via Sample Processing
    Xu, Honghui
    Wang, Xinqing
    Shao, Faming
    Duan, Baoguo
    Zhang, Peng
    IEEE ACCESS, 2021, 9 (09): : 29207 - 29221
  • [13] Few-Shot Object Detection via Knowledge Transfer
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3564 - 3569
  • [14] Few-shot Object Detection via Feature Reweighting
    Kang, Bingyi
    Liu, Zhuang
    Wang, Xin
    Yu, Fisher
    Feng, Jiashi
    Darrell, Trevor
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8419 - 8428
  • [15] Dynamic relevance learning for few-shot object detection
    Liu, Weijie
    Cai, Xiaojie
    Wang, Chong
    Li, Haohe
    Yu, Shenghao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [16] Few-shot Object Detection with Refined Contrastive Learning
    Shangguan, Zeyu
    Huai, Lian
    Liu, Tong
    Jiang, Xingqun
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 991 - 996
  • [17] Fast Hierarchical Learning for Few-Shot Object Detection
    She, Yihang
    Bhat, Goutam
    Danelljan, Martin
    Yu, Fisher
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 1993 - 2000
  • [18] Feature reconstruction and metric based network for few-shot object detection
    Li, Yuewen
    Feng, Wenquan
    Lyu, Shuchang
    Zhao, Qi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 227
  • [19] A metric-learning method for few-shot cross-event rumor detection
    Ran, Hongyan
    Jia, Caiyan
    Yu, Jian
    NEUROCOMPUTING, 2023, 533 : 72 - 85
  • [20] Few-Shot Object Detection with Fully Cross-Transformer
    Han, Guangxing
    Ma, Jiawei
    Huang, Shiyuan
    Chen, Long
    Chang, Shih-Fu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5311 - 5320