DR-CIML: Few-shot Object Detection via Base Data Resampling and Cross-iteration Metric Learning

被引:1
|
作者
Cao, Guoping [1 ]
Zhou, Wei [2 ]
Yang, Xudong [3 ]
Zhu, Feijia [3 ]
Chai, Lin [1 ,4 ]
机构
[1] Southeast Univ, Sch Automation, Key Lab Measurement & Control Complex Syst Engn, Nanjing, Peoples R China
[2] Sun Yat sen Univ, Sch Intelligent Syst Engn, Shenzhen, Peoples R China
[3] Walvis Intelligent Technol Co Ltd, Shenzhen R&D Ctr, Nanjing, Peoples R China
[4] Southeast Univ, Sch Automation, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1080/08839514.2023.2175116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the problems of difficult data collection and labor-intensive manual annotation, few-shot object detection (FSOD) has gained wide attention. Although current transfer-learning-based detection methods outperform meta-learning-based methods, their data organization fails to fully utilize the diversity of the source domain data. In view of this, Data Resampling (DR) organization is proposed to fine-tune the network, which can be employed as a component of any model and dataset without additional inference overhead. In addition, in order to improve the generalization of the model, a Cross-Iteration Metric-Learning (CIML) branch is embedded in the few-shot object detector, thus actively improving intra-category feature propinquity and inter-category feature discrimination. Our generic DR-CIML approach obtained competitive scores in extensive comparative experiments. The nAP50 performance on PASCAL VOC improved by up to 6.3 points, and the bAP50 performance reached 81.0, surpassing the base stage model (80.8) for the first time. The nAP75 performance on MS COCO improved by up to 1.6 points.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Few-Shot Object Detection via Metric Learning
    Zhu Min
    Zhang Chongyang
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [2] Few-shot object detection via baby learning
    Vu, Anh-Khoa Nguyen
    Nguyen, Nhat-Duy
    Nguyen, Khanh-Duy
    Nguyen, Vinh-Tiep
    Ngo, Thanh Duc
    Do, Thanh-Toan
    Nguyen, Tam V.
    IMAGE AND VISION COMPUTING, 2022, 120
  • [3] Few-shot object detection on aerial imagery via deep metric learning and knowledge inheritance
    Li, Wu-zhou
    Zhou, Jia-wei
    Li, Xiang
    Cao, Yi
    Jin, Guang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [4] Sampling-invariant fully metric learning for few-shot object detection
    Leng, Jiaxu
    Chen, Taiyue
    Gao, Xinbo
    Mo, Mengjingcheng
    Yu, Yongtao
    Zhang, Yan
    NEUROCOMPUTING, 2022, 511 : 54 - 66
  • [5] Few-Shot Learning for Road Object Detection
    Majee, Anay
    Agrawal, Kshitij
    Subramanian, Anbumani
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 115 - 126
  • [6] Few-Shot Object Detection via Transfer Learning and Contrastive Reweighting
    Wu, Zhen
    Li, Haowei
    Zhang, Dongyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 78 - 87
  • [7] Few-Shot Object Detection via Back Propagation and Dynamic Learning
    You, Dianlong
    Wang, Peng
    Zhang, Yi
    Wang, Ling
    Jin, Shunfu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2903 - 2908
  • [8] Few-shot object detection via data augmentation and distribution calibration
    Zhu, Songhao
    Zhang, Kai
    MACHINE VISION AND APPLICATIONS, 2024, 35 (01)
  • [9] Few-shot object detection via data augmentation and distribution calibration
    Songhao Zhu
    Kai Zhang
    Machine Vision and Applications, 2024, 35
  • [10] RepMet: Representative-based metric learning for classification and few-shot object detection
    Karlinsky, Leonid
    Shtok, Joseph
    Harary, Sivan
    Schwartz, Eli
    Aides, Amit
    Feris, Rogerio
    Giryes, Raja
    Bronstein, Alex M.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5192 - 5201