Research on urban 3D geological modeling based on multi-modal data fusion: a case study in Jinan, China

被引:10
|
作者
Zhuang, Can [1 ]
Zhu, Henghua [2 ]
Wang, Wei [2 ]
Liu, Bohan [2 ]
Ma, Yuhong [2 ]
Guo, Jing [2 ]
Liu, Chunhua [2 ]
Zhang, Huaping [2 ]
Liu, Fang [2 ]
Cui, Liangliang [3 ]
机构
[1] Shandong Univ Technol, Inst Architectural Engn, Zibo, Peoples R China
[2] Shandong Inst Geol Survey, Jinan, Peoples R China
[3] Jinan Zhongan Digital Technol Co Ltd, Jinan, Peoples R China
关键词
3D geological modeling; Geological survey report; Information extraction; Borehore log;
D O I
10.1007/s12145-022-00897-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Urban underground 3D geological modeling can accurately express various geological phenomena and provide a decision-making basis for urban planning and geological analysis. The construction of smart cities has put forward new requirements for the automation and intelligence of urban geological 3D modeling. Geological survey reports are important reference data for urban geological 3D modeling. However, a large number of geological maps, geophysical data, and other geographic quantitative data of geological science surveys have been buried in geological survey literature and have not been effectively used. Currently, the development of data mining and information extraction technology provides the possibility to integrate these data into 3D geological modeling. Therefore, this study designed the workflow of 3D geological modeling using a geological survey report. First, after the geological survey report was deconstructed, the geological text information was recognized and extracted using geological dictionary matching and pattern rule matching, and the integration of knowledge was provided in the form of a knowledge graph. Then, the drilling information and table data in the drilling histogram are automatically extracted. Through these methods, the unstructured geological survey report can be transformed into structured data and integrated into the 3D geological modeling process. Finally, the 3D geological modeling of the Bridge Group in Jinan based on the Jinan urban geological survey report was taken as an example to verify the feasibility of the proposed method and demonstrate the potential of text mining and information extraction of geological survey reports for 3D geological modeling, which provides geological data support for the transformation of old and new kinetic energy and the construction of major projects of government departments.
引用
收藏
页码:549 / 563
页数:15
相关论文
共 50 条
  • [21] Research on Urban Sustainability Indicators Based on Urban Grain: A Case Study in Jinan, China
    Zhao, Jilong
    Hao, Xinran
    Yang, Yang
    SUSTAINABILITY, 2023, 15 (18)
  • [22] Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection
    Li, Xin
    Shi, Botian
    Hou, Yuenan
    Wu, Xingjiao
    Ma, Tianlong
    Li, Yikang
    He, Liang
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 691 - 707
  • [23] Multi-modal feature fusion for 3D object detection in the production workshop
    Hou, Rui
    Chen, Guangzhu
    Han, Yinhe
    Tang, Zaizuo
    Ru, Qingjun
    APPLIED SOFT COMPUTING, 2022, 115
  • [24] FuseNet: a multi-modal feature fusion network for 3D shape classification
    Zhao, Xin
    Chen, Yinhuang
    Yang, Chengzhuan
    Fang, Lincong
    VISUAL COMPUTER, 2025, 41 (04): : 2973 - 2985
  • [25] Deformable Feature Fusion Network for Multi-Modal 3D Object Detection
    Guo, Kun
    Gan, Tong
    Ding, Zhao
    Ling, Qiang
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 363 - 367
  • [26] MLF3D: Multi-Level Fusion for Multi-Modal 3D Object Detection
    Jiang, Han
    Wang, Jianbin
    Xiao, Jianru
    Zhao, Yanan
    Chen, Wanqing
    Ren, Yilong
    Yu, Haiyang
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 1588 - 1593
  • [27] Evaluation of 3D Feature Descriptors for Multi-modal Data Registration
    Kim, Hansung
    Hilton, Adrian
    2013 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2013), 2013, : 119 - 126
  • [28] Robust 3D Semantic Segmentation Based on Multi-Phase Multi-Modal Fusion for Intelligent Vehicles
    Ni, Peizhou
    Li, Xu
    Xu, Wang
    Kong, Dong
    Hu, Yue
    Wei, Kun
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1602 - 1614
  • [29] A Multi-Modal Fusion-Based 3D Multi-Object Tracking Framework With Joint Detection
    Wang, Xiyang
    Fu, Chunyun
    He, Jiawei
    Huang, Mingguang
    Meng, Ting
    Zhang, Siyu
    Zhou, Hangning
    Xu, Ziyao
    Zhang, Chi
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 532 - 539
  • [30] Generating Adversarial Point Clouds on Multi-modal Fusion Based 3D Object Detection Model
    Wang, Huiying
    Shen, Huixin
    Zhang, Boyang
    Wen, Yu
    Meng, Dan
    INFORMATION AND COMMUNICATIONS SECURITY (ICICS 2021), PT I, 2021, 12918 : 187 - 203