On the normalized distance laplacian eigenvalues of graphs

被引:1
|
作者
Ganie, Hilal A. [1 ]
Rather, Bilal Ahmad [2 ]
Das, Kinkar Chandra [3 ]
机构
[1] JK Govt, Dept Sch Educ, Srinagar, Jammu & Kashmir, India
[2] United Arab Emirates Univ, Coll Sci, Math Sci Dept, Abu Dhabi 15551, U Arab Emirates
[3] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Graph; Normalized distance laplacian matrix; Energy; Diameter; Wiener index; RANDIC INDEX; ENERGY; SPECTRUM; MATRIX;
D O I
10.1016/j.amc.2022.127615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The normalized distance Laplacian matrix (Dc-matrix) of a connected graph Gamma is defined by Dc(Gamma)= I- T r(Gamma)-1 / 2D(Gamma)T r(Gamma)-1 / 2, where D(Gamma) is the distance matrix and T r(Gamma) is the diagonal matrix of the vertex transmissions in Gamma. In this article, we present interest-ing spectral properties of Dc(Gamma)-matrix. We characterize the graphs having exactly two distinct Dc-eigenvalues which in turn solves a conjecture proposed in [26]. We charac-terize the complete multipartite graphs with three distinct Dc-eigenvalues. We present the bounds for the Dc-spectral radius and the second smallest eigenvalue of Dc(Gamma)-matrix and identify the candidate graphs attaining them. We also identify the classes of graphs whose second smallest Dc-eigenvalue is 1 and relate it with the distance spectrum of such graphs. Further, we introduce the concept of the trace norm (the normalized distance Laplacian energy DcE(Gamma) of Gamma) of I- Dc(Gamma). We obtain some bounds and characterize the corre-sponding extremal graphs.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Normalized distance Laplacian matrices for signed graphs
    Roy, Roshni T.
    Germinal, K. A.
    Hameed, Shahul K.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (03) : 445 - 456
  • [22] Remarks on the sum of powers of normalized signless Laplacian eigenvalues of graphs
    Altindag, Serife Burcu Bozkurt
    Milovanovic, Igor
    Milovanovic, Emina
    Matejic, Marjan
    FILOMAT, 2023, 37 (28) : 9487 - 9496
  • [23] On Sum of Powers of Normalized Laplacian Eigenvalues and Resistance Distances of Graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    SSRN, 2022,
  • [24] On split graphs with three or four distinct (normalized) Laplacian eigenvalues
    Li, Shuchao
    Sun, Wanting
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (11) : 763 - 782
  • [25] New bounds for the sum of powers of normalized Laplacian eigenvalues of graphs
    Clemente, Gian Paolo
    Cornaro, Alessandra
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 403 - 413
  • [26] Normalized Laplacian eigenvalues with chromatic number and independence number of graphs
    Sun, Shaowei
    Das, Kinkar Ch
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (01): : 63 - 80
  • [27] On sum of powers of normalized Laplacian eigenvalues and resistance distances of graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 179 - 186
  • [28] A note on a distance bound using eigenvalues of the normalized laplacian matrix
    Kirkland, Steve
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 204 - 207
  • [29] On graphs with a few distinct reciprocal distance Laplacian eigenvalues
    Andelic, Milica
    Khan, Saleem
    Pirzada, S.
    AIMS MATHEMATICS, 2023, 8 (12): : 29008 - 29016
  • [30] DISTANCE LAPLACIAN EIGENVALUES OF GRAPHS, AND CHROMATIC AND INDEPENDENCE NUMBER
    Pirzada, Shariefuddin
    Khan, Saleem
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 145 - 159