A novel deep learning model for a computed tomography diagnosis of coronary plaque erosion

被引:3
|
作者
Park, Sangjoon [1 ]
Yuki, Haruhito [2 ]
Niida, Takayuki [2 ]
Suzuki, Keishi [2 ]
Kinoshita, Daisuke [2 ]
McNulty, Iris [2 ]
Broersen, Alexander [3 ]
Dijkstra, Jouke [3 ]
Lee, Hang [4 ]
Kakuta, Tsunekazu [5 ]
Ye, Jong Chul [1 ,6 ]
Jang, Ik-Kyung [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon, South Korea
[2] Harvard Med Sch, Massachusetts Gen Hosp, Cardiol Div, 55 Fruit St,GRB 800, Boston, MA 02114 USA
[3] Leiden Univ, Med Ctr, Dept Radiol, Div Image Proc, Leiden, Netherlands
[4] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Biostat Ctr, Boston, MA USA
[5] Tsuchiura Kyodo Gen Hosp, Dept Cardiol, Tsuchiura, Ibaraki, Japan
[6] Korea Adv Inst Sci & Technol, Kim Jaechul Grad Sch Artificial Intelligence, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
OPTICAL COHERENCE TOMOGRAPHY; INTRAVASCULAR ULTRASOUND; RUPTURE; PERFORMANCE;
D O I
10.1038/s41598-023-50483-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with acute coronary syndromes caused by plaque erosion might be managed conservatively without stenting. Currently, the diagnosis of plaque erosion requires an invasive imaging procedure. We sought to develop a deep learning (DL) model that enables an accurate diagnosis of plaque erosion using coronary computed tomography angiography (CTA). A total of 532 CTA scans from 395 patients were used to develop a DL model: 426 CTA scans from 316 patients for training and internal validation, and 106 separate scans from 79 patients for validation. Momentum Distillation-enhanced Composite Transformer Attention (MD-CTA), a novel DL model that can effectively process the entire set of CTA scans to diagnose plaque erosion, was developed. The novel DL model, compared to the convolution neural network, showed significantly improved AUC (0.899 [0.841-0.957] vs. 0.724 [0.622-0.826]), sensitivity (87.1 [70.2-96.4] vs. 71.0 [52.0-85.8]), and specificity (85.3 [75.3-92.4] vs. 68.0 [56.2-78.3]), respectively, for the patient-level prediction. Similar results were obtained at the slice-level prediction AUC (0.897 [0.890-0.904] vs. 0.757 [0.744-0.770]), sensitivity (82.2 [79.8-84.3] vs. 68.9 [66.2-71.6]), and specificity (80.1 [79.1-81.0] vs. 67.3 [66.3-68.4]), respectively. This newly developed DL model enables an accurate CT diagnosis of plaque erosion, which might enable cardiologists to provide tailored therapy without invasive procedures.Clinical Trial Registration:http://www.clinicaltrials.gov, NCT04523194.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Detection of coronary plaque by computed tomography with a novel plaque analysis system, 'plaque map', and comparison with intravascular ultrasound and angioscopy
    Komatsu, S
    Hirayama, A
    Omori, Y
    Ueda, Y
    Mizote, I
    Fujisawa, Y
    Kiyomoto, M
    Higashide, T
    Kodama, K
    CIRCULATION JOURNAL, 2005, 69 (01) : 72 - 77
  • [22] Deep learning-based quantitative image analysis for detecting coronary artery stenosis, calcification, and vulnerable plaque in coronary computed tomography angiography
    Kim, D.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [23] Machine Learning for Evaluating Vulnerable Plaque on Coronary Computed Tomography Using Spectral Imaging
    Mochizuki, Junji
    Hata, Yoshiki
    Nakaura, Takeshi
    Hashimoto, Katsushi
    Uetani, Hiroyuki
    Nagayama, Yasunori
    Kidoh, Masafumi
    Funama, Yoshinori
    Hirai, Toshinori
    CIRCULATION REPORTS, 2024, 6 (12) : 564 - 572
  • [24] Understanding Quantitative Computed Tomography Coronary Artery Plaque Assessment Using Machine Learning
    Williams, Michelle C.
    Newby, David E.
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (10) : 2174 - 2176
  • [25] Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography
    Filippo Cademartiri
    Nico R. Mollet
    Giuseppe Runza
    Nico Bruining
    Ronald Hamers
    Pamela Somers
    Michiel Knaapen
    Stefan Verheye
    Massimo Midiri
    Gabriel P. Krestin
    Pim J. de Feyter
    European Radiology, 2005, 15 : 1426 - 1431
  • [26] Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography
    Cademartiri, F
    Mollet, NR
    Runza, G
    Bruining, N
    Hamers, R
    Somers, P
    Knaapen, M
    Verheye, S
    Midiri, M
    Krestin, GP
    de Feyter, PJ
    EUROPEAN RADIOLOGY, 2005, 15 (07) : 1426 - 1431
  • [27] Reproducible coronary plaque quantification by multislice computed tomography
    Bruining, Nico
    Roelandt, Jos R. T. C.
    Palumbo, Alessandro
    La Grutta, Ludovico
    Cademartiri, Filippo
    de Feijter, Pirn J.
    Mollet, Nico
    van Domburg, Ron T.
    Serruys, P. W.
    Hamers, Ronald
    CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2007, 69 (06) : 857 - 865
  • [28] Natural history of a coronary plaque followed by computed tomography
    Inaba, Shinji
    Okayama, Hideki
    Kido, Teruhito
    Mochizuki, Teruhito
    Higaki, Jitsuo
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2012, 13 (03) : 242 - 242
  • [29] Predictors of Plaque Progression on Coronary Computed Tomography Angiography
    Williams, Michelle C.
    JACC-CARDIOVASCULAR IMAGING, 2023, 16 (04) : 505 - 507
  • [30] Deep learning-based plaque quantification from coronary computed tomography angiography: external validation and comparison with intravascular ultrasound
    Lin, A.
    Manral, N.
    McElhinney, P.
    Killekar, A.
    Matsumoto, H.
    Cadet, S.
    Achenbach, S.
    Nicholls, S. J.
    Wong, D. T.
    Berman, D.
    Dweck, M.
    Newby, D. E.
    Williams, M. C.
    Slomka, P. J.
    Dey, D.
    EUROPEAN HEART JOURNAL, 2021, 42 : 161 - 161