Structure-aware multi-view image inpainting using dual consistency attention

被引:3
|
作者
Xiang, Hongyue [1 ]
Min, Weidong [1 ,2 ,3 ,4 ]
Han, Qing [1 ,2 ,3 ]
Zha, Cheng [1 ]
Liu, Qian [1 ]
Zhu, Meng [1 ]
机构
[1] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Inst Metaverse, Nanchang 330031, Peoples R China
[3] Jiangxi Key Lab Smart City, Nanchang 330031, Peoples R China
[4] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Image inpainting; Multi-view; Structure-aware; Dual consistency attention; Image local refinement; QUALITY ASSESSMENT;
D O I
10.1016/j.inffus.2023.102174
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image inpainting based on deep learning has made remarkable progress and is widely used in image editing, cultural relic preservation, etc. However, most image inpainting methods are implemented based on single-view images. This does not fully utilize the known information and leads to unsatisfactory inpainting results. Moreover, these methods usually ignore the importance of image consistency and the surrounding regions, leading to irrelevant contents and visual artifacts in the inpainting results. To solve these problems, a structure-aware multi-view image inpainting method using dual consistency attention (SM-DCA) is proposed in this paper. It consists of two parts. The first part is the structure-aware multi-view image inpainting. This part constructs structure views as additional views to assist image inpainting. It is implemented by two networks: a structure inpainting network with strong constraints (SSC) and an image inpainting network with dual consistency attention (IDCA). SSC is used to repair structure views and make them closely resemble the ground truth through strong constraints. IDCA improves the consistency between the generated content and the whole image, making the repaired image more reasonable. The second part is image refinement, implemented by an image local refinement network (ILR). It can focus on the surrounding regions, eliminating boundary artifacts and obtaining finer local details. In Paris StreetView, SM-DCA achieves 22.0194, 0.7457 and 0.0557 in terms of PSNR, SSIM and MAE at 50%-60% damage. The corresponding values in CelebA are 22.5526, 0.8623 and 0.0453, respectively. The extensive experimental results on the Paris StreetView and CelebA datasets demonstrate the superiority of SM-DCA.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Structure-Aware Image Expansion with Global Attention
    Guo, Dewen
    Feng, Jie
    Zhou, Bingfeng
    SA'19: SIGGRAPH ASIA 2019 TECHNICAL BRIEFS, 2019, : 13 - 16
  • [12] Attention-Aware Multi-View Stereo
    Luo, Keyang
    Guan, Tao
    Ju, Lili
    Wang, Yuesong
    Chen, Zhuo
    Luo, Yawei
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1587 - 1596
  • [13] Multi-View Image Classification With Visual, Semantic and View Consistency
    Zhang, Chunjie
    Cheng, Jian
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 617 - 627
  • [14] Multi-View Inpainting for Image-Based Scene Editing and Rendering
    Thonat, Theo
    Shechtman, Eli
    Paris, Sylvain
    Drettakis, George
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 351 - 359
  • [15] Structure-aware image fusion
    Li, Wen
    Xie, Yuange
    Zhou, Haole
    Han, Ying
    Zhan, Kun
    OPTIK, 2018, 172 : 1 - 11
  • [16] Consistency- and Inconsistency-Aware Multi-view Subspace Clustering
    Zhang, Guang-Yu
    Chen, Xiao-Wei
    Zhou, Yu-Ren
    Wang, Chang-Dong
    Huang, Dong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 291 - 306
  • [17] Multi-view Attention with Memory Assistant for Image Captioning
    Fu, You
    Fang, Siyu
    Wang, Rui
    Yi, Xiulong
    Yu, Jianzhi
    Hua, Rong
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 436 - 440
  • [18] An object removal using multi-view sequence inpainting technique
    Lee, Soon-Young
    Heu, Jun-Hee
    Kim, Chang-Su
    Lee, Sang-Uk
    2008 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2008, : 1235 - +
  • [19] Graph Structure Aware Contrastive Multi-View Clustering
    Chen, Rui
    Tang, Yongqiang
    Cai, Xiangrui
    Yuan, Xiaojie
    Feng, Wenlong
    Zhang, Wensheng
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (03) : 260 - 274
  • [20] Consistency-aware and Inconsistency-aware Graph-based Multi-view Clustering
    Horie, Mitsuhiko
    Kasai, Hiroyuki
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1472 - 1476