Thermal Runaway Early Warning and Risk Estimation Based on Gas Production Characteristics of Different Types of Lithium-Ion Batteries

被引:14
|
作者
Cui, Yi [1 ]
Shi, Dong [1 ]
Wang, Zheng [2 ]
Mou, Lisha [3 ]
Ou, Mei [3 ]
Fan, Tianchi [3 ]
Bi, Shansong [1 ]
Zhang, Xiaohua [1 ]
Yu, Zhanglong [1 ]
Fang, Yanyan [1 ]
机构
[1] China Automot Battery Res Inst Co Ltd, 11 Xingke East St, Beijing 101407, Peoples R China
[2] Minist Ind & Informat Technol, Equipment Ind Dev Ctr, Beijing 100846, Peoples R China
[3] Chongqing Changan New Energy Vehicles Technol Co L, Chongqing 401135, Peoples R China
来源
BATTERIES-BASEL | 2023年 / 9卷 / 09期
关键词
lithium-ion battery safety; early warning sign; vent gas; thermal runaway degree; CATHODE MATERIALS; HIGH-POWER; FIRE; PROPAGATION; EXPLOSION; BEHAVIORS; EVOLUTION; FEATURES; FAILURE; CELLS;
D O I
10.3390/batteries9090438
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Gas production analysis during the thermal runaway (TR) process plays a crucial role in early fire accident detection in electric vehicles. To assess the TR behavior of lithium-ion batteries and perform early warning and risk estimation, gas production and analysis were conducted on LiNi(x)CoyMn(1-x-y)O(2)/graphite and LiFePO4/graphite cells under various trigger conditions. The findings indicate that the unique gas signals can provide TR warnings earlier than temperature, voltage, and pressure signals, with an advanced warning time ranging from 16 to 26 min. A new parameter called the thermal runaway degree (TRD) is introduced, which is the product of the molar quantity of gas production and the square root of the maximum temperature during the TR process. TRD is proposed to evaluate the severity of TR. The research reveals that TRD is influenced by the energy density of cells and the trigger conditions of TR. This parameter allows for a quantitative assessment of the safety risk associated with different battery types and the level of harm caused by various abuse conditions. Despite the uncertainties in the TR process, TRD demonstrates good repeatability (maximum relative deviation < 5%) and can be utilized as a characteristic parameter for risk estimation in lithium-ion batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Thermal Runaway Propagation Characteristics of Lithium-Ion Batteries with Different Cathode Materials: A Comparative Study
    Li, Yitong
    Wang, Huaibin
    Wang, Shilin
    Xu, Lejun
    Li, Yang
    Sun, Junli
    Gao, Yang
    FIRE TECHNOLOGY, 2025,
  • [22] Investigation on gas generation and corresponding explosion characteristics of lithium-ion batteries during thermal runaway at different charge states
    Zhang, Jiabo
    Guo, Qianzhen
    Liu, Shaoyan
    Zhou, Chao
    Huang, Zhen
    Han, Dong
    JOURNAL OF ENERGY STORAGE, 2024, 80
  • [23] Reliable and Early Warning of Lithium-Ion Battery Thermal Runaway Based on Electrochemical Impedance Spectrum
    Dong, Peng
    Liu, Zhongxiao
    Wu, Peng
    Li, Zhe
    Wang, Zhenpo
    Zhang, Jianbo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [24] Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway
    Yang, Yu
    Wang, Renjie
    Shen, Zhaojie
    Yu, Quanqing
    Xiong, Rui
    Shen, Weixiang
    ADVANCES IN APPLIED ENERGY, 2023, 11
  • [25] Thermal Runaway and Fire Suppression Applications for Different Types of Lithium Ion Batteries
    Un, Cagri
    Aydin, Kadir
    VEHICLES, 2021, 3 (03): : 480 - 497
  • [26] Review of Gas Generation Behavior during Thermal Runaway of Lithium-Ion Batteries
    Qi, Chuang
    Liu, Zhenyan
    Lin, Chunjing
    Hu, Yuanzhi
    SAE INTERNATIONAL JOURNAL OF ELECTRIFIED VEHICLES, 2024, 13 (03):
  • [27] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [28] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [29] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [30] Comparison on Thermal Runaway and Critical Characteristics of Cylindrical Lithium-Ion Batteries: A Review
    Li, Wei
    Wang, Jiasheng
    Sun, Chunfeng
    Fan, Xiaoping
    Gong, Lingzhu
    Huang, Jiale
    Wu, Jian-heng
    Yu, Gending
    Chen, Rongguo
    Li, Jingling
    Duh, Yih-Shing
    ACS CHEMICAL HEALTH & SAFETY, 2025,