Configurational assessment of solidification performance in a triplex-tube heat exchanger filled with composite phase change material

被引:11
|
作者
Alam, Md Tabrez [1 ]
Raj, Aashna [1 ]
Singh, Lalan K. [1 ]
Gupta, Anoop K. [1 ]
机构
[1] Indian Inst Technol Patna, Dept Chem & Biochem Engn, Energy & Thermofluids Lab, Amhara Rd, Patna 801106, Bihar, India
关键词
Triplex; -tube; Phase change material; Solidification; Metal foam; Configurational optimization; THERMAL-ENERGY STORAGE; METAL FOAM; PHOTOVOLTAIC CELLS; FORCED-CONVECTION; ENHANCEMENT; PCM; CONDUCTIVITY; SIMULATION; PARAFFIN; FLUID;
D O I
10.1016/j.applthermaleng.2023.120814
中图分类号
O414.1 [热力学];
学科分类号
摘要
The melting/solidification performance of a latent heat based thermal energy storage (TES) system is impeded due to the poor thermal conductivity of phase change materials (PCMs). To circumvent this limitation, several approaches have been adopted such as incorporation of nanoparticles including carbon nanotubes, fins/extended surfaces, heat pipes, metal foam, etc. This work presents an innovative design optimization technique for the solidification (discharging) enhancement by embedding the porous copper metal foam in PCM (referred as composite PCM) inside a triplex-tube heat exchanger unit. Equal volume ratio (0.5 v/v) of PCM and composite PCM was considered inside the annular space. Fifteen different configurations (M-1 to M-15) of composite PCM under the four broad classes based on the relative positioning and arrangement of metal foam were investigated and compared. Transient drop in melt fraction during solidification, temperature contours, instantaneous solidification contours, and total energy change in the solid PCM have been discussed. Numerical experiments demonstrated that the segmentation of porous metal foam zone in TES units significantly improves the discharging performance. The results suggest that upon maintaining a direct contact of the composite PCM zone with the flowing heat transfer fluid further improves heat dissipation and leads to an enhancement of -3.2 times (M-15) as compared to the pure PCM case (M-1). The overall performance is improved when the metal foam is placed above the pure PCM in TES unit. Typical results predict -97.5% and - 91.1% reduction in solidification time for model M-2 (fully filled with metal foam of porosity 0.95) and M-11 (uniform segmentation of metal foam of porosity 0.95 into 4 zones), respectively, when compared with pure PCM (M-1). An evaluation of the rate of the total energy released per unit cost of material used during discharging reports that model M-11 outperforms (the maximum value of -8.9) all other models having identical mass of PCM and/or composite PCM.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Solidification expedition of Phase Change Material in a triplex-tube storage unit via novel fins and SWCNT nanoparticles
    Alizadeh, M.
    Pahlavanian, M. H.
    Tohidi, M.
    Ganji, D. D.
    JOURNAL OF ENERGY STORAGE, 2020, 28 (28)
  • [12] Simultaneous energy storage and recovery in triplex-tube heat exchanger using multiple phase change materials with nanoparticles
    Mozafari, M.
    Lee, Ann
    Cheng, Shaokoon
    JOURNAL OF ENERGY STORAGE, 2022, 49
  • [13] Experimental Investigation of Sinusoidal Tube in Triplex-Tube Heat Exchanger during Charging and Discharging Processes Using Phase Change Materials
    Assari, M. R.
    Tabrizi, H. Basirat
    Parvar, M.
    Farhani, M. Alkasir
    INTERNATIONAL JOURNAL OF ENGINEERING, 2019, 32 (07): : 999 - 1009
  • [14] Numerical analysis of phase-change material melting in triplex tube heat exchanger
    Yang, Kun
    Zhu, Neng
    Chang, Chen
    Yu, Haoran
    Yang, Shan
    RENEWABLE ENERGY, 2020, 145 : 867 - 877
  • [15] Simulation of triplex-tube heat storage including nanoparticles, solidification process
    Wang, Renping
    Sheikholeslami, M.
    Mahmood, Barham Sabir
    Shafee, Ahmad
    Nguyen-Thoi, Trung
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 296
  • [16] Numerical investigation of a triplex tube heat exchanger with phase change material: Simultaneous charging and discharging
    Joybari, Mahmood Mastani
    Haghighat, Fariborz
    Seddegh, Saeid
    ENERGY AND BUILDINGS, 2017, 139 : 426 - 438
  • [17] Simultaneous charging and discharging of metal foam composite phase change material in triplex-tube latent heat storage system under various configurations
    Alam, Md Tabrez
    Gupta, Anoop K.
    CHEMICAL PRODUCT AND PROCESS MODELING, 2023, 18 (05): : 823 - 837
  • [18] Optimization of the thermal performance of a lobed triplex-tube solar thermal storage system equipped with a phase change material
    NematpourKeshteli, Abolfazl
    Iasiello, Marcello
    Langella, Giuseppe
    Bianco, Nicola
    HELIYON, 2024, 10 (16)
  • [19] Heat Transfer Augmentation Using Duplex and Triplex Tube Phase Change Material (PCM) Heat Exchanger Configurations
    Zaib, Aurang
    Mazhar, Abdur Rehman
    Aziz, Shahid
    Talha, Tariq
    Jung, Dong-Won
    ENERGIES, 2023, 16 (10)
  • [20] Optimizing diverse triplex-tube heat storage systems with composite phase change materials in simultaneous charging and discharging environment
    Alam, Md Tabrez
    Kumar, Rajesh
    Gupta, Anoop K.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 155