Study on non-iterative algorithms for center-of-sets type-reduction of Takagi-Sugeno-Kang type general type-2 fuzzy logic systems

被引:1
|
作者
Chen, Yang [1 ]
机构
[1] Liaoning Univ Technol, Coll Sci, Jinzhou 121001, Peoples R China
基金
中国国家自然科学基金;
关键词
General type-2 fuzzy logic systems; Computational efficiency; Center-of-sets type-reduction; Alpha-planes; Non-iterative algorithms; CENTROID TYPE-REDUCTION; EDGE-DETECTION METHOD; INTERVAL TYPE-2; UNCERTAINTY MEASURES; OPTIMIZATION; DESIGN; SPEED; ROBOT;
D O I
10.1007/s40747-022-00927-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper performs the center-of-sets (COS) type-reduction (TR) and de-fuzzification for Takagi-Sugeno-Kang (TSK) type general type-2 fuzzy logic systems (GT2 FLSs) on the basis of the alpha-planes expression of general type-2 fuzzy sets. Actually, comparing the popular Karnik-Mendel (KM) algorithms with other non-iterative algorithms is an important question in T2 society. Here the modules of fuzzy inference, COS TR, and de-fuzzification for TSK type GT2 FLSs are discussed by means of non-iterative Nagar-Bardini (NB) algorithms, Nie-Tan (NT) algorithms, and Begian-Melek-Mendel (BMM) algorithms. Simulation instances are constructed to illustrate the performances of three types of non-iterative algorithms compared with the KM algorithms. It is proved that, the proposed non-iterative algorithms can enhance the computational efficiencies significantly, which afford the potential application value for designers of GT2 FLSs.
引用
收藏
页码:4015 / 4023
页数:9
相关论文
共 50 条
  • [41] Hybrid-Learning Type-2 Takagi-Sugeno-Kang Fuzzy Systems for Temperature Estimation in Hot-Rolling
    Angel Barrios, Jose
    Maximiliano Mendez, Gerardo
    Cavazos, Alberto
    METALS, 2020, 10 (06) : 1 - 18
  • [42] Type-Reduction of General Type-2 Fuzzy Sets: The Type-1 OWA Approach
    Chiclana, Francisco
    Zhou, Shang-Ming
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2013, 28 (05) : 505 - 522
  • [43] Study on centroid type-reduction of general type-2 fuzzy logic systems with sensible beginning weighted enhanced Karnik–Mendel algorithms
    Yang Chen
    Soft Computing, 2023, 27 : 9261 - 9279
  • [44] Type-2 fuzzy sets: Geometric defuzzification and type-reduction
    Coupland, Simon
    2007 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE, VOLS 1 AND 2, 2007, : 622 - 629
  • [45] An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets
    Yeh, Chi-Yuan
    Jeng, Wen-Hau Roger
    Lee, Shie-Jue
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2011, 19 (02) : 227 - 240
  • [46] ICT2TSK: An Improved Clustering Algorithm for WSN Using a Type-2 Takagi-Sugeno-Kang Fuzzy Logic System
    Zhang, Feng
    Zhang, Qi-Ye
    Sun, Ze-Ming
    2013 IEEE SYMPOSIUM ON WIRELESS TECHNOLOGY & APPLICATIONS (ISWTA2013), 2013, : 153 - 158
  • [47] An efficient centroid type-reduction strategy for general type-2 fuzzy logic system
    Liu, Feilong
    INFORMATION SCIENCES, 2008, 178 (09) : 2224 - 2236
  • [48] Sliding mode incremental learning algorithm for interval type-2 Takagi-Sugeno-Kang fuzzy neural networks
    Ahmed, Sevil
    Shakev, Nikola
    Topalov, Andon
    Shiev, Kostadin
    Kaynak, Okyay
    EVOLVING SYSTEMS, 2012, 3 (03) : 179 - 188
  • [49] Study on weighted-based noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems
    Chen, Yang
    Wu, Jinxia
    Lan, Jie
    AIMS MATHEMATICS, 2020, 5 (06): : 7719 - 7745
  • [50] Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems
    Chen, Yang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (04) : 2417 - 2428