On the equivalence of classical Helmholtz equation and fractional Helmholtz equation with arbitrary order

被引:3
|
作者
Cheng, Xinyu [1 ]
Li, Dong [2 ,3 ]
Yang, Wen [4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China
[3] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[4] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
Fractional Helmholtz equation; tempered distribution; Fourier transform; UNIQUENESS;
D O I
10.1142/S0219199722500365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the equivalence of the classical Helmholtz equation and the fractional Helmholtz equation with arbitrary order. This improves a recent result of Guan, Murugan and Wei [Helmholtz solutions for the Fractional Laplacian and other related operators, to appear in Comm. Contemp. Math.].
引用
收藏
页数:8
相关论文
共 50 条
  • [31] TRANSMISSION PROBLEMS FOR HELMHOLTZ EQUATION
    KRESS, R
    ROACH, GF
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (06) : 1433 - 1437
  • [32] AN AVERAGING METHOD FOR THE HELMHOLTZ EQUATION
    Ma'u, S. L.
    Ramankutty, P.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 604 - 609
  • [33] Symmetry problems for the Helmholtz equation
    Ramm, Alexander G.
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 122 - 125
  • [34] An inverse problem for the Helmholtz equation
    GylysColwell, F
    INVERSE PROBLEMS, 1996, 12 (02) : 139 - 156
  • [35] The many faces of the Helmholtz equation
    Liboff, RL
    PHYSICS ESSAYS, 1999, 12 (03) : 492 - 498
  • [36] A robust approach for computing solutions of fractional-order two-dimensional Helmholtz equation
    Muhammad Nadeem
    Zitian Li
    Devendra Kumar
    Yahya Alsayaad
    Scientific Reports, 14
  • [37] Probabilistic solutions of the Helmholtz equation
    Budaev, BV
    Bogy, DB
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2001, 109 (05): : 2260 - 2262
  • [38] Perturbation Theory for the Helmholtz Equation
    Gesztesy, Fritz
    Waurick, Marcus
    CALLIAS INDEX FORMULA REVISITED, 2016, 2157 : 119 - 129
  • [39] A compression method for the Helmholtz equation
    Stolper, M
    Rjasanow, S
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 786 - 795
  • [40] The Riccati method for the Helmholtz equation
    Lu, YY
    McLaughlin, JR
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (03): : 1432 - 1446