On the equivalence of classical Helmholtz equation and fractional Helmholtz equation with arbitrary order

被引:3
|
作者
Cheng, Xinyu [1 ]
Li, Dong [2 ,3 ]
Yang, Wen [4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China
[3] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[4] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
Fractional Helmholtz equation; tempered distribution; Fourier transform; UNIQUENESS;
D O I
10.1142/S0219199722500365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the equivalence of the classical Helmholtz equation and the fractional Helmholtz equation with arbitrary order. This improves a recent result of Guan, Murugan and Wei [Helmholtz solutions for the Fractional Laplacian and other related operators, to appear in Comm. Contemp. Math.].
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Cylindrically Symmetric Fractional Helmholtz Equation
    Nairat, Mazen S.
    Shqair, Mohammed
    Alhalholy, Tareq
    APPLIED MATHEMATICS E-NOTES, 2019, 19 : 708 - 717
  • [2] A FAST SOLVER FOR THE FRACTIONAL HELMHOLTZ EQUATION
    Glusa, Christian
    Antil, Harbir
    D'Elia, Marta
    Waanders, Bart van Bloemen
    Weiss, Chester J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A1362 - A1388
  • [3] CLASSICAL AND NONCLASSICAL SYMMETRIES FOR THE HELMHOLTZ-EQUATION
    NUCCI, MC
    AMES, WF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 178 (02) : 584 - 591
  • [4] The global uniqueness of a dissipative fractional Helmholtz equation
    Zhang, Yu
    Zhang, Wenjing
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [5] Factorization of the Fundamental Solution to Fractional Helmholtz Equation
    Belevtsov, N. S.
    Lukashchuk, S. Yu.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (01) : 57 - 62
  • [6] Factorization of the Fundamental Solution to Fractional Helmholtz Equation
    N. S. Belevtsov
    S. Yu. Lukashchuk
    Lobachevskii Journal of Mathematics, 2021, 42 : 57 - 62
  • [7] Fractional solutions of Helmholtz equation in scattering problems
    Ahmedov, TM
    Ivakhnychenko, MV
    Veliev, EI
    MSMW'04: FIFTH INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER, AND SUBMILLIMETER WAVES, SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2004, : 910 - 912
  • [8] Hypercomplex operator calculus for the fractional Helmholtz equation
    Vieira, Nelson
    Ferreira, Milton
    Rodrigues, M. Manuela
    Krausshar, Rolf Soeren
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (14) : 11439 - 11472
  • [9] ON EQUIVALENCE TRANSFORMATIONS AND EXACT SOLUTIONS OF A HELMHOLTZ TYPE EQUATION
    Bhutani, O. P.
    Chowdhury, Lipika Roy
    MATHEMATICS IN SCIENCE AND TECHNOLOGY: MATHEMATICAL METHODS, MODELS AND ALGORITHMS IN SCIENCE AND TECHNOLOGY, 2011, : 162 - 181
  • [10] HELMHOLTZ-EQUATION EIGENVALUES AND EIGENMODES FOR ARBITRARY DOMAINS
    TAI, GRC
    SHAW, RP
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 56 (03): : 796 - 804