On perfect powers that are difference of two Perrin numbers or two Padovan numbers

被引:0
|
作者
Duman, Merve Gueney [1 ]
机构
[1] Sakarya Univ Appl Sci, Fac Technol Fundamental Sci Engn, Sakarya, Turkiye
来源
关键词
Diophantine equations; Continued fraction; Linear forms in logarithms; Padovan number; Perrin number; FIBONACCI NUMBERS; F-N; LUCAS; SUMS; FORM;
D O I
10.1007/s43538-023-00225-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let (Pk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{k})_{k\ge 0}$$\end{document} be the sequence of Padovan numbers and (Rk)k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_{k})_{k\ge 0}$$\end{document} be the sequence of Perrin numbers. In this paper, we solve the equations Rn-Rm=xa,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}-R_{m}=x<^>{a},$$\end{document}Pn-Pm=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}-P_{m}=x<^>{a}$$\end{document}, and Rn=xa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{n}=x<^>{a}$$\end{document} where n, m, a, x are nonnegative integers, 1 <= a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le a$$\end{document} and 2 <= x <= 10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le x\le 10$$\end{document}.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [41] Repdigits base η as sum or product of Perrin and Padovan numbers
    Taher, Hunar Sherzad
    Dash, Saroj Kumar
    AIMS MATHEMATICS, 2024, 9 (08): : 20173 - 20192
  • [42] On Padovan or Perrin numbers as products of three repdigits in base δ
    Tiebekabe, Pagdame
    Adedji, Kouessi Norbert
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [43] Perrin numbers that are concatenations of two repdigits
    Batte, Herbert
    Chalebgwa, Taboka P.
    Ddamulira, Mahadi
    ARABIAN JOURNAL OF MATHEMATICS, 2022, 11 (03) : 469 - 478
  • [44] PADOVAN NUMBERS THAT ARE CONCATENATIONS OF TWO DISTINCT REPDIGITS
    Ddamulira, Mahadi
    MATHEMATICA SLOVACA, 2021, 71 (02) : 275 - 284
  • [45] Generalized Padovan numbers, Perrin numbers and maximal k-independent sets in graphs
    Wloch, Iwona
    Wloch, Andrzej
    ARS COMBINATORIA, 2011, 99 : 359 - 364
  • [46] ON THE PROBLEM OF PILLAI WITH PADOVAN NUMBERS AND POWERS OF 3
    Ddamulira, Mahadi
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (03) : 364 - 379
  • [47] Powers of Two as Sums of Two Lucas Numbers
    Bravo, Jhon J.
    Luca, Florian
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (08)
  • [48] Powers of Two as Sums of Two Balancing Numbers
    Bartz, Jeremiah
    Dearden, Bruce
    Iiams, Joel
    Peterson, Julia
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 383 - 392
  • [49] On perfect numbers which are ratios of two Fibonacci numbers
    Luca, Florian
    Mejia Huguet, V. Janitzio
    ANNALES MATHEMATICAE ET INFORMATICAE, 2010, 37 : 107 - 124
  • [50] Numbers expressible as a difference of two Pisot numbers
    A. Dubickas
    Acta Mathematica Hungarica, 2024, 172 : 346 - 358