FS-3DSSN: an efficient few-shot learning for single-stage 3D object detection on point clouds

被引:1
|
作者
Tiwari, Alok Kumar [1 ]
Sharma, G. K. [1 ]
机构
[1] ABV Indian Inst Informat Technol & Management, Dept Informat Technol, Gwalior, India
来源
VISUAL COMPUTER | 2024年 / 40卷 / 11期
关键词
Point cloud; 3D object detection; Few-shot learning; Single-stage detector; Autonomous driving;
D O I
10.1007/s00371-023-03228-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The current 3D object detectionmethods have achieved promising results for conventional tasks to detect frequently occurring objects like cars, pedestrians and cyclists. However, they require many annotated boundary boxes and class labels for training, which is very expensive and hard to obtain. Nevertheless, detecting infrequent occurring objects, such as police vehicles, is also essential for autonomous driving to be successful. Therefore, we explore the potential of few-shot learning to handle this challenge of detecting infrequent categories. The current 3D object detectors do not have the necessary architecture to support this type of learning. Thus, this paper presents a new method termed few-shot single-stage network for 3D object detection (FS-3DSSN) to predict infrequent categories of objects. FS-3DSSN uses a class-incremental few-shot learning approach to detect infrequent categories without compromising the detection accuracy of frequent categories. It consists of twomodules: (i) a single-stage network architecture for 3D object detection (3DSSN) using deformable convolutions to detect small objects and (ii) a class-incremental-based meta-learning module to learn and predict infrequent class categories. 3DSSN obtained 84.53 mAP(3D) on the KITTI car category and 73.4 NDS on the nuScenes dataset, outperforming previous state of the art. Further, the result of FS-3DSSN on nuScenes is also encouraging for detecting infrequent categories while maintaining accuracy in frequent classes.
引用
收藏
页码:8125 / 8139
页数:15
相关论文
共 50 条
  • [31] SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation
    Liu, Zechen
    Wu, Zizhang
    Toth, Roland
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 4289 - 4298
  • [32] Efficient 3D object recognition using foveated point clouds
    Gomes, Rafael Beserra
    Ferreira da Silva, Bruno Marques
    de Medeiros Rocha, Lourena Karin
    Aroca, Rafael Vidal
    Pacheco Rodrigues Velho, Luiz Carlos
    Garcia Goncalves, Luiz Marcos
    COMPUTERS & GRAPHICS-UK, 2013, 37 (05): : 496 - 508
  • [33] Efficient and accurate object detection for 3D point clouds in intelligent visual internet of things
    Hui Li
    Junyin Wang
    Lingwei Xu
    Shujun Zhang
    Ye Tao
    Multimedia Tools and Applications, 2021, 80 : 31297 - 31334
  • [34] Efficient and accurate object detection for 3D point clouds in intelligent visual internet of things
    Li, Hui
    Wang, Junyin
    Xu, Lingwei
    Zhang, Shujun
    Tao, Ye
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 31297 - 31334
  • [35] Knowledge guided object detection and identification in 3D Point Clouds
    Karmacharya, A.
    Boochs, F.
    Tietz, B.
    VIDEOMETRICS, RANGE IMAGING, AND APPLICATIONS XIII, 2015, 9528
  • [36] Deep Hough Voting for 3D Object Detection in Point Clouds
    Qi, Charles R.
    Litany, Or
    He, Kaiming
    Guibas, Leonidas J.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9276 - 9285
  • [37] 3D Object Detection with Normal-map on Point Clouds
    Miao, Jishu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 569 - 576
  • [38] Boosting 3D Object Detection by Simulating Multimodality on Point Clouds
    Zheng, Wu
    Hong, Mingxuan
    Jiang, Li
    Fu, Chi-Wing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 13628 - 13637
  • [39] Boundary points guided 3D object detection for point clouds
    Tang, Qingsong
    Yang, Mingzhi
    Wang, Ziyi
    Dong, Wenhao
    Liu, Yang
    APPLIED SOFT COMPUTING, 2024, 165
  • [40] Weakly Supervised Point Clouds Transformer for 3D Object Detection
    Tang, Zuojin
    Sun, Bo
    Ma, Tongwei
    Li, Daosheng
    Xu, Zhenhui
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3948 - 3955