Generative artificial intelligence empowers digital twins in drug discovery and clinical trials

被引:29
|
作者
Bordukova, Maria [1 ,2 ,3 ]
Makarov, Nikita [1 ,2 ,3 ]
Rodriguez-Esteban, Raul [4 ]
Schmich, Fabian [1 ]
Menden, Michael P. [2 ,3 ,5 ,6 ]
机构
[1] Roche Innovat Ctr Munich RICM, Data & Analyt, Pharmaceut Res & Early Dev, Penzberg, Germany
[2] Helmholtz Munich, Inst Computat Biol, Computat Hlth Ctr, Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Biol, Munich, Germany
[4] Roche Innovat Ctr Basel RICB, Data & Analyt, Pharmaceut Res & Early Dev, Basel, Switzerland
[5] Univ Melbourne, Dept Biochem & Pharmacol, Melbourne, Australia
[6] German Ctr Diabet Res DZD eV, Munich, Germany
基金
欧洲研究理事会;
关键词
Clinical trials; deep learning; digital twins; drug discovery; generative artificial intelligence;
D O I
10.1080/17460441.2023.2273839
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: The concept of Digital Twins (DTs) translated to drug development and clinical trials describes virtual representations of systems of various complexities, ranging from individual cells to entire humans, and enables in silico simulations and experiments. DTs increase the efficiency of drug discovery and development by digitalizing processes associated with high economic, ethical, or social burden. The impact is multifaceted: DT models sharpen disease understanding, support biomarker discovery and accelerate drug development, thus advancing precision medicine. One way to realize DTs is by generative artificial intelligence (AI), a cutting-edge technology that enables the creation of novel, realistic and complex data with desired properties.Areas covered: The authors provide a brief introduction to generative AI and describe how it facilitates the modeling of DTs. In addition, they compare existing implementations of generative AI for DTs in drug discovery and clinical trials. Finally, they discuss technical and regulatory challenges that should be addressed before DTs can transform drug discovery and clinical trials.Expert opinion: The current state of DTs in drug discovery and clinical trials does not exploit the entire power of generative AI yet and is limited to simulation of a small number of characteristics. Nonetheless, generative AI has the potential to transform the field by leveraging recent developments in deep learning and customizing models for the needs of scientists, physicians and patients.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [21] Digital Twins Generated by Artificial Intelligence in Personalized Healthcare
    Lukaniszyn, Marian
    Majka, Lukasz
    Grochowicz, Barbara
    Mikolajewski, Dariusz
    Kawala-Sterniuk, Aleksandra
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [22] The emerging role of artificial intelligence and digital twins in pre-clinical molecular imaging*
    Currie, Geoffrey M.
    NUCLEAR MEDICINE AND BIOLOGY, 2023, 120
  • [23] Generative artificial intelligence for small molecule drug design
    Kanakala, Ganesh Chandan
    Devata, Sriram
    Chatterjee, Prathit
    Priyakumar, Udaykumar Deva
    CURRENT OPINION IN BIOTECHNOLOGY, 2024, 89
  • [24] Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence
    Eckardt, Jan-Niklas
    Hahn, Waldemar
    Roellig, Christoph
    Stasik, Sebastian
    Platzbecker, Uwe
    Mueller-Tidow, Carsten
    Serve, Hubert
    Baldus, Claudia D.
    Schliemann, Christoph
    Schaefer-Eckart, Kerstin
    Hanoun, Maher
    Kaufmann, Martin
    Burchert, Andreas
    Thiede, Christian
    Schetelig, Johannes
    Sedlmayr, Martin
    Bornhaeuser, Martin
    Wolfien, Markus
    Middeke, Jan Moritz
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [25] Mimicking Clinical Trials with Synthetic Acute Myeloid Leukemia Patients Using Generative Artificial Intelligence
    Eckardt, Jan-Niklas
    Hahn, Waldemar
    Roellig, Christoph
    Stasik, Sebastian
    Platzbecker, Uwe
    Mueller-Tidow, Carsten
    Serve, Hubert
    Baldus, Claudia D.
    Schliemann, Christoph
    Schaefer-Eckart, Kerstin
    Hanoun, Maher
    Kaufmann, Martin
    Burchert, Andreas
    Thiede, Christian
    Schetelig, Johannes
    Bornhaeuser, Martin
    Wolfien, Markus
    Middeke, Jan Moritz
    BLOOD, 2023, 142
  • [26] Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence
    Jan-Niklas Eckardt
    Waldemar Hahn
    Christoph Röllig
    Sebastian Stasik
    Uwe Platzbecker
    Carsten Müller-Tidow
    Hubert Serve
    Claudia D. Baldus
    Christoph Schliemann
    Kerstin Schäfer-Eckart
    Maher Hanoun
    Martin Kaufmann
    Andreas Burchert
    Christian Thiede
    Johannes Schetelig
    Martin Sedlmayr
    Martin Bornhäuser
    Markus Wolfien
    Jan Moritz Middeke
    npj Digital Medicine, 7
  • [27] Artificial Intelligence in Cardiovascular Clinical Trials
    Cunningham, Jonathan W.
    Abraham, William T.
    Bhatt, Ankeet S.
    Dunn, Jessilyn
    Felker, G. Michael
    Jain, Sneha S.
    Lindsell, Christopher J.
    Mace, Matthew
    Martyn, Trejeeve
    Shah, Rashmee U.
    Tison, Geoffrey H.
    Fakhouri, Tala
    Psotka, Mitchell A.
    Krumholz, Harlan
    Fiuzat, Mona
    O'Connor, Christopher M.
    Solomon, Scott D.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 84 (20) : 2051 - 2062
  • [28] Randomized Clinical Trials of Artificial Intelligence
    Angus, Derek C.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (11): : 1043 - 1045
  • [29] Advancing Drug Discovery via Artificial Intelligence
    Chan, H. C. Stephen
    Shan, Hanbin
    Dahoun, Thamani
    Vogel, Horst
    Yuan, Shuguang
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2019, 40 (08) : 592 - 604
  • [30] Artificial Intelligence for Drug Discovery: AreWe There Yet?
    Hasselgren, Catrin
    Oprea, Tudor I.
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2024, 64 : 527 - 550