Construction of stemness gene score by bulk and single-cell transcriptome to characterize the prognosis of breast cancer

被引:0
|
作者
Lin, Jun [1 ,2 ,3 ]
Feng, Deyi [4 ]
Liu, Jie [5 ]
Yang, Ye [6 ]
Wei, Xujin [7 ]
Lin, Wenqia [1 ,2 ,3 ]
Lin, Qun [1 ,2 ,3 ]
机构
[1] Fujian Med Univ, Affiliated Hosp 1, Dept Anesthesiol, Fuzhou 350005, Peoples R China
[2] Fujian Med Univ, Affiliated Hosp 1, Natl Reg Med Ctr, Dept Anesthesiol, Binhai Campus, Fuzhou 350212, Peoples R China
[3] Fujian Med Univ, Affiliated Hosp 1, Anesthesiol Res Inst, Fuzhou 350005, Peoples R China
[4] Xiamen Univ, Xiamen 361100, Peoples R China
[5] Fujian Med Univ, Dept Endoscopy, Shengli Clin Med Coll, Fuzhou 350001, Peoples R China
[6] Fujian Med Univ, Affiliated Hosp 1, Fuzhou 350005, Peoples R China
[7] Fujian Med Univ, Grad Sch, Fuzhou 350001, Peoples R China
来源
AGING-US | 2023年 / 15卷 / 16期
关键词
breast cancer; prognosis; single-cell RNA-sequencing; tumor microenvironment; SIGNATURES; PACKAGE;
D O I
暂无
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Breast cancer (BC) is a heterogeneous disease characterized by significant differences in prognosis and therapy response. Numerous prognostic tools have been developed for breast cancer. Usually these tools are based on bulk RNA-sequencing (RNA-Seq) and ignore tumor heterogeneity. Consequently, the goal of this study was to construct a single-cell level tool for predicting the prognosis of BC patients. In this study, we constructed a stemness-risk gene score (SGS) model based on single-sample gene set enrichment analysis (ssGSEA). Patients were divided into two groups based on the median SGS. Patients with a high SGS scores had a significantly worse prognosis than those with a low SGS, and these groups exhibited differences in several tumor characteristics, such as immune infiltration, gene mutations, and copy number variants. Our results indicate that the SGS is a reliable tool for predicting prognosis and response to immunotherapy in BC patients.
引用
收藏
页码:8185 / 8203
页数:19
相关论文
共 50 条
  • [31] Bulk and single-cell transcriptome profiling reveal necroptosis-based molecular classification, tumor microenvironment infiltration characterization, and prognosis prediction in colorectal cancer
    Wenqin Luo
    Wenqiang Xiang
    Lu Gan
    Ji Che
    Jing Li
    Yichao Wang
    Lingyu Han
    Ruiqi Gu
    Li Ye
    Renjie Wang
    Xiuping Zhang
    Ye Xu
    Weixing Dai
    Shaobo Mo
    Qingguo Li
    Guoxiang Cai
    Journal of Translational Medicine, 20
  • [32] Bulk and single-cell transcriptome profiling reveal necroptosis-based molecular classification, tumor microenvironment infiltration characterization, and prognosis prediction in colorectal cancer
    Luo, Wenqin
    Xiang, Wenqiang
    Gan, Lu
    Che, Ji
    Li, Jing
    Wang, Yichao
    Han, Lingyu
    Gu, Ruiqi
    Ye, Li
    Wang, Renjie
    Zhang, Xiuping
    Xu, Ye
    Dai, Weixing
    Mo, Shaobo
    Li, Qingguo
    Cai, Guoxiang
    JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [33] Imputation of single-cell transcriptome data enables the reconstruction of networks predictive of breast cancer metastasis
    Cha, Junha
    Lavi, Michael
    Kim, Junhan
    Shomron, Noam
    Lee, Insuk
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 2296 - 2304
  • [34] Construction of a prognostic 6-gene signature for breast cancer based on multi-omics and single-cell data
    Xing, Zeyu
    Lin, Dongcai
    Hong, Yuting
    Ma, Zihuan
    Jiang, Hongnan
    Lu, Ye
    Sun, Jiale
    Song, Jiarui
    Xie, Li
    Yang, Man
    Xie, Xintong
    Wang, Tianyu
    Zhou, Hong
    Chen, Xiaoqi
    Wang, Xiang
    Gao, Jidong
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [35] Integrating single-cell and bulk expression data to identify and analyze cancer prognosis-related genes
    Bao, Shengbao
    Fan, Yaxin
    Mei, Yichao
    Gao, Junxiang
    HELIYON, 2024, 10 (04)
  • [36] Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis
    Xu, Kun
    Wang, Runtian
    Xie, Hui
    Hu, Longfei
    Wang, Cong
    Xu, Jiali
    Zhu, Chengjun
    Liu, Yiqiu
    Gao, Fangyan
    Li, Xintong
    Wang, Cenzhu
    Huang, Jinyi
    Zhou, Wenbin
    Zhou, Guohua
    Shu, Yongqian
    Guan, Xiaoxiang
    ONCOGENESIS, 2021, 10 (10)
  • [37] The single-cell pathology landscape of breast cancer
    Jackson, Hartland W.
    Fischer, Jana R.
    Zanotelli, Vito R. T.
    Ali, H. Raza
    Mechera, Robert
    Soysal, Savas D.
    Moch, Holger
    Muenst, Simone
    Varga, Zsuzsanna
    Weber, Walter P.
    Bodenmiller, Bernd
    NATURE, 2020, 578 (7796) : 615 - +
  • [38] Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis
    Kun Xu
    Runtian Wang
    Hui Xie
    Longfei Hu
    Cong Wang
    Jiali Xu
    Chengjun Zhu
    Yiqiu Liu
    Fangyan Gao
    Xintong Li
    Cenzhu Wang
    Jinyi Huang
    Wenbin Zhou
    Guohua Zhou
    Yongqian Shu
    Xiaoxiang Guan
    Oncogenesis, 10
  • [39] Investigating Breast Cancer with Single-Cell Sequencing
    Navin, N. E.
    CANCER RESEARCH, 2012, 72
  • [40] The single-cell pathology landscape of breast cancer
    Hartland W. Jackson
    Jana R. Fischer
    Vito R. T. Zanotelli
    H. Raza Ali
    Robert Mechera
    Savas D. Soysal
    Holger Moch
    Simone Muenst
    Zsuzsanna Varga
    Walter P. Weber
    Bernd Bodenmiller
    Nature, 2020, 578 : 615 - 620