Graph convolutional network with STC attention and adaptive normalization for skeleton-based action recognition

被引:3
|
作者
Zhou, Haiyun [1 ]
Xiang, Xuezhi [2 ,3 ]
Qiu, Yujian [2 ]
Liu, Xuzhao [2 ]
机构
[1] Nanjing Forest Police Coll, Coll Publ Secur, Nanjing, Peoples R China
[2] Harbin Engn Univ, Sch Informat & Commun Engn, Harbin 150001, Peoples R China
[3] Minist Ind & Informat Technol, Key Lab Adv Marine Commun & Informat Technol, Harbin 150001, Peoples R China
来源
IMAGING SCIENCE JOURNAL | 2023年 / 71卷 / 07期
基金
中国国家自然科学基金;
关键词
Skeleton-based action recognition; Skeleton features; graph convolutional network; STC attention module; Spatial attention; Temporal attention; Channel attention; adaptive normalization;
D O I
10.1080/13682199.2023.2190927
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Graph Convolutional Network (GCN) have been widely used in the field of skeleton-based action recognition and have achieved exciting results. Introducing attention mechanism in the process of extracting skeleton features has always been a hot spot in GCN-related research. In this article, we design a new graph convolutional network, which combines the advanced decoupling graph convolutional network (DC-GCN) with spatial, temporal, channel (STC) series attention module and adaptive normalization (AN). The STC attention module helps the network tend to extract important information from skeleton features. In addition, in order to improve the adaptability of the normalization method to GCN, we design the AN module instead of the BN module, which can train the weights of different normalization methods, so that each normalization layer in the network adopts the most suitable normalization operation. The experimental results show that the accuracy of our method is competitive with the state-of-the-art action recognition methods.
引用
收藏
页码:636 / 646
页数:11
相关论文
共 50 条
  • [21] Prompt-supervised dynamic attention graph convolutional network for skeleton-based action recognition
    Zhu, Shasha
    Sun, Lu
    Ma, Zeyuan
    Li, Chenxi
    He, Dongzhi
    NEUROCOMPUTING, 2025, 611
  • [22] Multi-scale Dilated Attention Graph Convolutional Network for Skeleton-Based Action Recognition
    Shu, Yang
    Li, Wanggen
    Li, Doudou
    Gao, Kun
    Jie, Biao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I, 2024, 14425 : 16 - 28
  • [23] Two Stream Multi-Attention Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhou, Huijian
    Tian, Zhiqiang
    Du, Shaoyi
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 112 - 120
  • [24] Skeleton-based action recognition based on multidimensional adaptive convolutional network
    Xia, Yu
    Gao, Qingyuan
    Wu, Weiguan
    Cao, Yi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [25] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [26] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [27] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146
  • [28] Feature reconstruction graph convolutional network for skeleton-based action recognition
    Huang, Junhao
    Wang, Ziming
    Peng, Jian
    Huang, Feihu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [29] Multi-stream adaptive spatial-temporal attention graph convolutional network for skeleton-based action recognition
    Yu, Lubin
    Tian, Lianfang
    Du, Qiliang
    Bhutto, Jameel Ahmed
    IET COMPUTER VISION, 2022, 16 (02) : 143 - 158
  • [30] Temporal Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhuang T.
    Qin Z.
    Ding Y.
    Deng F.
    Chen L.
    Qin Z.
    Raymond Choo K.-K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1586 - 1598