Physics-informed deep reinforcement learning for enhancement on tunnel boring machine's advance speed and stability

被引:11
|
作者
Lin, Penghui [1 ]
Wu, Maozhi [2 ]
Xiao, Zhonghua [3 ]
Tiong, Robert L. K. [1 ]
Zhang, Limao [4 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Hubei Jianke Technol Grp, Wuhan 430223, Peoples R China
[3] Hubei Ind Construct Grp Co LTD, 42 Xiongchu St, Wuhan 430076, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Natl Ctr Technol Innovat Digital Construct, Sch Civil & Hydraul Engn, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Physics -informed learning; Reinforcement learning; Deep learning; Tunnel construction; NEURAL-NETWORKS; PREDICTION; FRAMEWORK;
D O I
10.1016/j.autcon.2023.105234
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The traditional mode of Tunnel Boring Machine (TBM) operation is limited in their applicability and efficiency to meet the growing demand for underground spaces. Current methods to address this problem often lack physics interpretability and automatic adaptivity. In response to this issue, this paper describes an approach that integrates a physics-informed reinforcement learning (PIRL) algorithm into a TBM operation. The method combines a physics-informed machine learning (PIML) model and physics reward functions considering the working mechanism of earth pressure balance (EPB) TBMs, forming into a physics-informed Twin Delayed Deep Deterministic (pTD3) algorithm. The study reveals that the TBM performance can be improved by 69.3% using the pTD3 algorithm compared to manual operation. Integrating physics knowledge into reinforcement learning proves significantly effective in enhancing the TBM operations. The proposed method has the potential to revolutionize TBM operation and pave the way for more efficient, reliable, and automatic tunnel construction.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Physics-Informed Deep Learning for Tool Wear Monitoring
    Zhu, Kunpeng
    Guo, Hao
    Li, Si
    Lin, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 524 - 533
  • [32] Physics-informed deep learning cascade loss model
    Feng, Yunyang
    Song, Xizhen
    Yuan, Wei
    Lu, Hanan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 134
  • [33] Physics-informed deep learning for fringe pattern analysis
    Wei Yin
    Yuxuan Che
    Xinsheng Li
    Mingyu Li
    Yan Hu
    Shijie Feng
    Edmund Y.Lam
    Qian Chen
    Chao Zuo
    Opto-ElectronicAdvances, 2024, 7 (01) : 7 - 19
  • [34] Emergent physics-informed design of deep learning for microscopy
    Wijesinghe, Philip
    Dholakia, Kishan
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [35] Physics-informed reinforcement learning for optimal control of nonlinear systems
    Wang, Yujia
    Wu, Zhe
    AICHE JOURNAL, 2024, 70 (10)
  • [36] Transient Voltage Control Based on Physics-Informed Reinforcement Learning
    Gao, Jiemai
    Chen, Siyuan
    Li, Xiang
    Zhang, Jun
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2022, 6 : 905 - 910
  • [37] Physics-informed deep learning for incompressible laminar flows
    Chengping Rao
    Hao Sun
    Yang Liu
    Theoretical & Applied Mechanics Letters, 2020, (03) : 207 - 212
  • [38] Physics-informed deep learning for incompressible laminar flows
    Rao, Chengping
    Sun, Hao
    Liu, Yang
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2020, 10 (03) : 207 - 212
  • [39] Physics-informed deep learning for fringe pattern analysis
    Yin, Wei
    Che, Yuxuan
    Li, Xinsheng
    Li, Mingyu
    Hu, Yan
    Feng, Shijie
    Lam, Edmund Y.
    Chen, Qian
    Zuo, Chao
    OPTO-ELECTRONIC ADVANCES, 2024, 7 (01)
  • [40] Physics-informed Bayesian machine learning for probabilistic inference and refinement of milling stability predictions
    Akbari, Vahid Ostad Ali
    Kuffa, Michal
    Wegener, Konrad
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2023, 45 : 225 - 239