Physics-informed deep reinforcement learning for enhancement on tunnel boring machine's advance speed and stability

被引:11
|
作者
Lin, Penghui [1 ]
Wu, Maozhi [2 ]
Xiao, Zhonghua [3 ]
Tiong, Robert L. K. [1 ]
Zhang, Limao [4 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Hubei Jianke Technol Grp, Wuhan 430223, Peoples R China
[3] Hubei Ind Construct Grp Co LTD, 42 Xiongchu St, Wuhan 430076, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Natl Ctr Technol Innovat Digital Construct, Sch Civil & Hydraul Engn, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Physics -informed learning; Reinforcement learning; Deep learning; Tunnel construction; NEURAL-NETWORKS; PREDICTION; FRAMEWORK;
D O I
10.1016/j.autcon.2023.105234
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The traditional mode of Tunnel Boring Machine (TBM) operation is limited in their applicability and efficiency to meet the growing demand for underground spaces. Current methods to address this problem often lack physics interpretability and automatic adaptivity. In response to this issue, this paper describes an approach that integrates a physics-informed reinforcement learning (PIRL) algorithm into a TBM operation. The method combines a physics-informed machine learning (PIML) model and physics reward functions considering the working mechanism of earth pressure balance (EPB) TBMs, forming into a physics-informed Twin Delayed Deep Deterministic (pTD3) algorithm. The study reveals that the TBM performance can be improved by 69.3% using the pTD3 algorithm compared to manual operation. Integrating physics knowledge into reinforcement learning proves significantly effective in enhancing the TBM operations. The proposed method has the potential to revolutionize TBM operation and pave the way for more efficient, reliable, and automatic tunnel construction.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Physics-informed machine learning
    George Em Karniadakis
    Ioannis G. Kevrekidis
    Lu Lu
    Paris Perdikaris
    Sifan Wang
    Liu Yang
    Nature Reviews Physics, 2021, 3 : 422 - 440
  • [2] Physics-informed machine learning
    Karniadakis, George Em
    Kevrekidis, Ioannis G.
    Lu, Lu
    Perdikaris, Paris
    Wang, Sifan
    Yang, Liu
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 422 - 440
  • [3] Physics-informed machine learning models for ship speed prediction
    Lang, Xiao
    Wu, Da
    Mao, Wengang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [4] Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning
    Mandl, Luis
    Goswami, Somdatta
    Lambers, Lena
    Ricken, Tim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [5] Gas-Lift Optimization Using Physics-Informed Deep Reinforcement Learning
    Faria, Ruan de Rezende
    Capron, Bruno Didier Olivier
    Secchi, Argimiro Resende
    de Souza, Mauricio Bezerra, Jr.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (32) : 14199 - 14210
  • [6] A Taxonomic Survey of Physics-Informed Machine Learning
    Pateras, Joseph
    Rana, Pratip
    Ghosh, Preetam
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [7] Physics-informed deep learning for digital materials
    Zhang, Zhizhou
    Gu, Grace X.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (01)
  • [8] Physics-Informed Model-Based Reinforcement Learning
    Ramesh, Adithya
    Ravindran, Balaraman
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [9] Physics-informed deep learning for digital materials
    Zhizhou Zhang
    Grace X Gu
    Theoretical & Applied Mechanics Letters, 2021, 11 (01) : 52 - 57
  • [10] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713