WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS

被引:2
|
作者
Chone, Philippe [1 ]
Gozlan, Nathael [2 ]
Kramarz, Francis [3 ,4 ]
机构
[1] CREST, ENSAE, Inst Polytech Paris, Paris, France
[2] Univ Paris Cite, MAP5, CNRS, F-75006 Paris, France
[3] CREST, Inst Polytech Paris, ENSAE, Paris, France
[4] Uppsala Univ, Dept Econ, Uppsala, Sweden
基金
欧洲研究理事会;
关键词
optimal transport; weak optimal transport; duality; convex order; Strassen's theorem; PROBABILITY-MEASURES; REARRANGEMENT; COSTS;
D O I
10.1137/22M1501301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new variant of the weak optimal transport problem where mass is distributed from one space to the other through unnormalized kernels. We give sufficient conditions for primal attainment and prove a dual formula for this transport problem. We also obtain dual attainment conditions for some specific cost functions. As a byproduct, we obtain a transport characterization of the stochastic order defined by convex positively 1-homogenous functions, in the spirit of the Strassen theorem for convex domination.
引用
收藏
页码:6039 / 6092
页数:54
相关论文
共 50 条
  • [21] OPTIMAL KERNELS IN ROSENBLATTPARSEN DENSITY ESTIMATOR
    DIMITROVA, SS
    VANDEV, DL
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (04): : 381 - 383
  • [22] OPTIMAL KERNELS FOR NONSTATIONARY SPECTRAL ESTIMATION
    SAYEED, AM
    JONES, DL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (02) : 478 - 491
  • [23] OPTIMAL QUADRATURE FORMULAS WITH SEMIDEFINITE KERNELS
    SCHMEISSER, G
    NUMERISCHE MATHEMATIK, 1972, 20 (01) : 32 - +
  • [24] OPTIMAL KERNELS FOR A GENERAL SAMPLING THEOREM
    ENGELS, W
    STARK, EL
    VOGT, L
    JOURNAL OF APPROXIMATION THEORY, 1987, 50 (01) : 69 - 83
  • [25] Optimal measures and Markov transition kernels
    Roman V. Belavkin
    Journal of Global Optimization, 2013, 55 : 387 - 416
  • [26] Are Gabor Kernels Optimal for Iris Recognition?
    Boyd, Aidan
    Czajka, Adam
    Bowyer, Kevin
    IEEE/IAPR INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2020), 2020,
  • [27] Optimal measures and Markov transition kernels
    Belavkin, Roman V.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 55 (02) : 387 - 416
  • [28] Integral operators with variable kernels on weak Hardy spaces
    Ding, Y
    Lu, SZ
    Shao, SL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) : 127 - 135
  • [29] INVARIANT COMPTON KERNELS FOR RADIATION TRANSPORT
    WIENKE, BR
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 21 (JUN): : 528 - 529
  • [30] COLLISION KERNELS AND TRANSPORT-COEFFICIENTS
    BERMAN, PR
    HAVERKORT, JEM
    WOERDMAN, JP
    PHYSICAL REVIEW A, 1986, 34 (06): : 4647 - 4656