Quantization of algebraic invariants through Topological Quantum Field Theories

被引:0
|
作者
Gonzalez-Prieto, Angel [1 ,2 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[2] Inst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 15, Madrid 28049, Spain
关键词
Topological Quantum Field Theory; TQFT; Quantization; Monoidal structure; Representation variety; FUNDAMENTAL GROUP; VARIETIES; REPRESENTATIONS; POLYNOMIALS; MODULI;
D O I
10.1016/j.geomphys.2023.104849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the problem of constructing Topological Quantum Field Theories (TQFTs) to quantize algebraic invariants. We exhibit necessary conditions for quantizability based on Euler characteristics. In the case of surfaces, also provide a partial answer in terms of sufficient conditions by means of almost-TQFTs and almost-Frobenius algebras for wide TQFTs. As an application, we show that the Poincare polynomial of G -representation varieties is not a quantizable invariant by means of a monoidal TQFTs for any algebraic group G of positive dimension.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:22
相关论文
共 50 条
  • [21] TOPOLOGICAL QUANTUM-FIELD THEORIES
    ATIYAH, M
    PUBLICATIONS MATHEMATIQUES, 1988, (68): : 175 - 186
  • [22] On the symmetries of topological quantum field theories
    Baulieu, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (31): : 4483 - 4499
  • [23] Algebraic characterization of vector supersymmetry in topological field theories
    Sorella, SP
    Vilar, LCQ
    Ventura, OS
    Sasaki, CAG
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) : 848 - 866
  • [24] QUANTUM MEASUREMENT AND ALGEBRAIC QUANTUM FIELD-THEORIES
    DEFACIO, B
    FOUNDATIONS OF PHYSICS, 1976, 6 (02) : 185 - 192
  • [25] Topological orders beyond topological quantum field theories
    Vojta, P.
    Ortiz, G.
    Nussinov, Z.
    PHYSICAL REVIEW B, 2025, 111 (04)
  • [26] Homotopy theory of algebraic quantum field theories
    Benini, Marco
    Schenkel, Alexander
    Woike, Lukas
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1487 - 1532
  • [27] Gluing Algebraic Quantum Field Theories on Manifolds
    Anastopoulos, Angelos
    Benini, Marco
    ANNALES HENRI POINCARE, 2025,
  • [28] Homotopy theory of algebraic quantum field theories
    Marco Benini
    Alexander Schenkel
    Lukas Woike
    Letters in Mathematical Physics, 2019, 109 : 1487 - 1532
  • [29] Topological quantum field theory and algebraic structures
    Kimura, T
    QUANTUM FIELD THEORY AND NONCOMMUTATIVE GEOMETRY, 2005, 662 : 255 - 287
  • [30] Quantum Neural Networks and Topological Quantum Field Theories
    Marciano, Antonino
    Chen, Deen
    Fabrocini, Filippo
    Fields, Chris
    Greco, Enrico
    Gresnigt, Niels
    Jinklub, Krid
    Lulli, Matteo
    Terzidis, Kostas
    Zappala, Emanuele
    NEURAL NETWORKS, 2022, 153 : 164 - 178