Probabilistic Community Detection in Social Networks

被引:4
|
作者
Souravlas, Stavros [1 ,2 ]
Anastasiadou, Sofia D. [2 ]
Economides, Theodore [1 ]
Katsavounis, Stefanos [3 ]
机构
[1] Univ Macedonia, Dept Appl Informat, Thessaloniki 54636, Greece
[2] Univ Western Macedonia, Sch Hlth Sci, Dept Midwafery, Ptolemaida 50020, Greece
[3] Democritus Univ Thrace, Dept Prod & Management Engn, Xanthi 69100, Greece
关键词
Social networking (online); Probabilistic logic; Computational modeling; Topology; Generators; Clustering algorithms; Representation learning; Community detection; social networking; closed networks; linear complexity; MODULARITY;
D O I
10.1109/ACCESS.2023.3257021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The detection of community structures is a very crucial research area. The problem of community detection has received considerable attention from a large portion of the scientific community. More importantly, these articles are spread across a large number of different disciplines, from computer science, to statistics, and social sciences. The analysis of modern social networks becomes rather cumbersome, as their size and number keeps growing larger and larger. Moreover, in the modern communities, users participate in large number of groups. From the network perspective, efficient methods should be developed to automatically identify overlapping communities, that is, communities with overlapping nodes. In this work, we use a probabilistic network model to characterize and identify linked communities with common nodes. The innovative idea in this work is that the communities are represented as Markovian networks with continuously changing states. Each state represents the number of users within a cluster, that have specific characteristic classes. Based on the current state, we introduce a fast, linear on the number of newly added users, approach to estimate the probability of each cluster to be homogeneous in terms of sets of user characteristics and to determine how well the new user fit within a community. Because of the linear computations involved, our proposed probabilistic model can detect communities and overlaps with low execution time and high accuracy, as shown in our experimental results. The experimental results have shown that our probabilistic scheme executes faster and provides more robust communities compared to competitive schemes.
引用
收藏
页码:25629 / 25641
页数:13
相关论文
共 50 条
  • [31] Community Detection in Social Networks: Literature Review
    Rani, Seema
    Mehrotra, Monica
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2019, 18 (02)
  • [32] Community Detection for Heterogeneous Multiple Social Networks
    Zhu, Ziqing
    Yuan, Guan
    Zhou, Tao
    Cao, Jiuxin
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05): : 6966 - 6981
  • [33] Community Detection on Social Networks With Sentimental Interaction
    Feng, Bingdao
    Cheng, Fangyu
    Liu, Yanfei
    Chang, Xinglong
    Wang, Xiaobao
    Jin, Di
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2024, 20 (01)
  • [34] Community Detection in Social Networks by Cultural Algorithm
    Zadeh, Pooya Moradim
    Kobti, Ziad
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS, 2015, : 319 - 325
  • [35] Evolutionary Community Detection in Dynamic Social Networks
    Liu, Fanzhen
    Wu, Jia
    Zhou, Chuan
    Yang, Jian
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [36] Review on Community Detection Algorithms in Social Networks
    Wang, Cuijuan
    Tang, Wenzhong
    Sun, Bo
    Fang, Jing
    Wang, Yanyang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 551 - 555
  • [37] Multiscale Local Community Detection in Social Networks
    Luo, Wenjian
    Zhang, Daofu
    Ni, Li
    Lu, Nannan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (03) : 1102 - 1112
  • [38] Community Detection Metrics and Algorithms in Social Networks
    Pattanayak, Himansu Sekhar
    Verma, Harsh K.
    Sangal, A. L.
    2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 483 - 489
  • [39] Survey on Efficient Community Detection in Social Networks
    Suryateja, G.
    Palani, Saravanan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 93 - 97
  • [40] An Overview of Community Detection Algorithms in Social Networks
    Varsha, Kulkarni
    Patil, Kiran Kumari
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 121 - 126