机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Klavzar, Sandi
[1
,2
,3
]
Krishnakumar, Aditi
论文数: 0引用数: 0
h-index: 0
机构:
Open Univ, Dept Math & Stat, Milton Keynes, EnglandUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Krishnakumar, Aditi
[4
]
Tuite, James
论文数: 0引用数: 0
h-index: 0
机构:
Open Univ, Dept Math & Stat, Milton Keynes, EnglandUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Tuite, James
[4
]
Yero, Ismael G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cadiz, Dept Matemat, Algeciras, SpainUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Yero, Ismael G.
[5
]
机构:
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Open Univ, Dept Math & Stat, Milton Keynes, England
general position set;
mobile general position set;
mobile general position number;
robot navigation;
unicyclic graph;
Kneser graph;
D O I:
10.1017/S0004972723000102
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a graph. Assume that to each vertex of a set of vertices S subset of V(G) a robot is assigned. At each stage one robot can move to a neighbouring vertex. Then S is a mobile general position set of G if there exists a sequence of moves of the robots such that all the vertices of G are visited while maintaining the general position property at all times. The mobile general position number of G is the cardinality of a largest mobile general position set of G. We give bounds on the mobile general position number and determine exact values for certain common classes of graphs, including block graphs, rooted products, unicyclic graphs, Kneser graphs K(n, 2) and line graphs of complete graphs.