Weakly-Supervised RGBD Video Object Segmentation

被引:0
|
作者
Yang, Jinyu [1 ,2 ]
Gao, Mingqi [1 ,3 ]
Zheng, Feng [4 ]
Zhen, Xiantong [5 ]
Ji, Rongrong [6 ]
Shao, Ling [7 ]
Leonardis, Ales [8 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
[2] Univ Birmingham, Birmingham B15 2TT, England
[3] Univ Warwick, Coventry CV4 7AL, England
[4] Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
[5] Guangdong Univ Petrochem Technol, Coll Comp Sci, Maoming 525011, Peoples R China
[6] Xiamen Univ, Sch Informat, Dept Artificial Intelligence, Media Analyt & Comp Lab, Xiamen 361005, Peoples R China
[7] Univ Chinese Acad Sci, UCAS Terminus AI Lab, Beijing 101408, Peoples R China
[8] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, England
基金
中国国家自然科学基金;
关键词
Annotations; Object segmentation; Training; Target tracking; Task analysis; Object tracking; Benchmark testing; RGBD data; video object segmentation; visual tracking; TRACKING;
D O I
10.1109/TIP.2024.3374130
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth information opens up new opportunities for video object segmentation (VOS) to be more accurate and robust in complex scenes. However, the RGBD VOS task is largely unexplored due to the expensive collection of RGBD data and time-consuming annotation of segmentation. In this work, we first introduce a new benchmark for RGBD VOS, named DepthVOS, which contains 350 videos (over 55k frames in total) annotated with masks and bounding boxes. We futher propose a novel, strong baseline model - Fused Color-Depth Network (FusedCDNet), which can be trained solely under the supervision of bounding boxes, while being used to generate masks with a bounding box guideline only in the first frame. Thereby, the model possesses three major advantages: a weakly-supervised training strategy to overcome the high-cost annotation, a cross-modal fusion module to handle complex scenes, and weakly-supervised inference to promote ease of use. Extensive experiments demonstrate that our proposed method performs on par with top fully-supervised algorithms. We will open-source our project on https://github.com/yjybuaa/depthvos/ to facilitate the development of RGBD VOS.
引用
收藏
页码:2158 / 2170
页数:13
相关论文
共 50 条
  • [31] Efficient Weakly-Supervised Object Detection with Pseudo Annotations
    Yuan, Qingsheng
    Sun, Gang
    Liang, Jianming
    Leng, Biao
    IEEE Access, 2021, 9 : 104356 - 104366
  • [32] Weakly-Supervised Contrastive Learning for Unsupervised Object Discovery
    Lv, Yunqiu
    Zhang, Jing
    Barnes, Nick
    Dai, Yuchao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2689 - 2702
  • [33] Discovering an inference recipe for weakly-supervised object localization
    Lee, Sanghuk
    Mun, Cheolhyun
    Uh, Youngjung
    Choe, Junsuk
    Byun, Hyeran
    PATTERN RECOGNITION, 2024, 156
  • [34] Discriminative region suppression for weakly-supervised semantic segmentation
    Korea Advanced Institute of Science and Technology , Korea, Republic of
    arXiv, 1600,
  • [35] Expansion and Shrinkage of Localization for Weakly-Supervised Semantic Segmentation
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Wei, Xiaolin
    Ma, Lin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [36] Weakly-Supervised Semantic Segmentation Using Motion Cues
    Tokmakov, Pavel
    Alahari, Karteek
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 388 - 404
  • [37] HYPERGRAPH CONVOLUTIONAL NETWORKS FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Giraldo, Jhony H.
    Scarrica, Vincenzo
    Staiano, Antonino
    Camastra, Francesco
    Bouwmans, Thierry
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 16 - 20
  • [38] Weakly-Supervised Medical Image Segmentation with Gaze Annotations
    Zhong, Yuan
    Tang, Chenhui
    Yang, Yumeng
    Qi, Ruoxi
    Zhou, Kang
    Gong, Yuqi
    Heng, Pheng Ann
    Hsiao, Janet H.
    Dou, Qi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT III, 2024, 15003 : 530 - 540
  • [39] Weakly-Supervised Semantic Segmentation Network With Iterative dCRF
    Li, Yujie
    Sun, Jiaxing
    Li, Yun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25419 - 25426
  • [40] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Wang, Xiang
    Liu, Sifei
    Ma, Huimin
    Yang, Ming-Hsuan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (06) : 1736 - 1749