Few-Shot Classification with Semantic Augmented Activators

被引:0
|
作者
Gao, Ruixuan [1 ]
Su, Han [1 ,2 ,3 ]
Tang, Peisen [1 ]
机构
[1] Sichuan Normal Univ, Sch Comp Sci, Chengdu 610101, Peoples R China
[2] Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu, Peoples R China
[3] Univ Hull, Sch Comp Sci, Kingston Upon Hull, N Humberside, England
关键词
Few-shot learning; Metric-based learning; Transductive inference;
D O I
10.1007/978-981-99-8543-2_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metric-based methods predict class labels by measuring the distance between a few given samples, often failing to preserve more useful semantic details in their vectorial representations. In this paper, we propose Semantic Augmented Activators (SAA), which are generated based on the variance of the intra-set samples in an unsupervised manner, to enhance the discriminability of feature vectors with more class-related semantic information. This generation process does not rely on any learnable parameters. Meanwhile, to align the SAA preferred to operate in the intra-set and sufficiently leverage the finite samples, we treat the Self-Cross loss as an auxiliary loss, which bi-directionally complements the limitations of the traditional loss function. Additionally, we introduce Map-To-Cluster, a transductive module to map the SAA-enhanced features to a lower-dimensional embedding space. This encourages proximity among similar samples and separation among dissimilar samples. The resulting methods are lightweight and computationally efficient. Our methods demonstrate competitive performance on the mini-ImageNet and tiered-ImageNet benchmarks, and achieve outstanding results in Cross-Domain Few-Shot classification.
引用
收藏
页码:340 / 352
页数:13
相关论文
共 50 条
  • [41] LEARNING WITH MEMORY FOR FEW-SHOT SEMANTIC SEGMENTATION
    Lu, Hongchao
    Wei, Chao
    Deng, Zhidong
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 629 - 633
  • [42] PRIOR SEMANTIC HARMONIZATION NETWORK FOR FEW-SHOT SEMANTIC SEGMENTATION
    Yang, Xinhao
    Ma, Liyan
    Zhou, Yang
    Peng, Yan
    Xie, Shaorong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1126 - 1130
  • [43] Augmented B path Network for Few-shot Learning
    Yan, Baoming
    Zhou, Chen
    Zhao, Bo
    Guo, Kan
    Yang, Jiang
    Li, Xiaobo
    Zhang, Ming
    Wang, Yizhou
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8461 - 8468
  • [44] Contextual Information Augmented Few-Shot Relation Extraction
    Wang, Tian
    Wang, Zhiguang
    Wang, Rongliang
    Li, Dawei
    Lu, Qiang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 138 - 149
  • [45] Decomposing Visual and Semantic Correlations for Both Fully Supervised and Few-Shot Image Classification
    Zhang C.
    Zheng X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1658 - 1668
  • [46] Semantic-Aligned Attention With Refining Feature Embedding for Few-Shot Image Classification
    Xu, Xianda
    Xu, Xing
    Shen, Fumin
    Li, Yujie
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25458 - 25468
  • [47] Dual adaptive local semantic alignment for few-shot fine-grained classification
    Song, Wei
    Yang, Kaili
    VISUAL COMPUTER, 2025, 41 (04): : 2923 - 2937
  • [48] Few-Shot and Zero-Shot Semantic Segmentation for Food Images
    Honbu, Yuma
    Yanai, Keiji
    PROCEEDINGS OF THE 13TH INTERNATIONAL WORKSHOP ON MULTIMEDIA FOR COOKING AND EATING ACTIVITIES (CEA '21), 2021, : 25 - 28
  • [49] Causal representation for few-shot text classification
    Yang, Maoqin
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21422 - 21432
  • [50] Personalized federated few-shot node classification
    Yunfeng ZHAO
    Xintong HE
    Guoxian YU
    Jun WANG
    Yongqing ZHENG
    Carlotta DOMENICONI
    Science China(Information Sciences), 2025, 68 (01) : 204 - 218