The use of artificial intelligence in detecting papilledema from fundus photographs

被引:3
|
作者
Anandi, Lazuardiah [1 ]
Budihardja, Brigitta Marcia [1 ]
Anggraini, Erika [1 ]
Badjrai, Rona Ali [1 ]
Nusanti, Syntia [2 ,3 ]
机构
[1] Univ Indonesia, Dr Cipto Mangunkusumo Hosp, Fac Med, Dept Ophthalmol, Jakarta, Indonesia
[2] Univ Indonesia, Dr Cipto Mangunkusumo Hosp, Fac Med, Dept Ophthalmol,Div Neuroophthalmol, Jakarta, Indonesia
[3] Cipto Mangunkusumo Kirana Eye Hosp, Kimia St 8-10, Cent Jakarta 10320, Jakarta, Indonesia
关键词
Artificial intelligence; fundus photography; papilledema; OPTICAL COHERENCE TOMOGRAPHY; DIAGNOSIS;
D O I
10.4103/tjo.TJO-D-22-00178
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Papilledema is an optic disc swelling with increased intracranial pressure as the underlying cause. Diagnosis of papilledema is made based on ophthalmoscopy findings. Although important, ophthalmoscopy can be challenging for general physicians and nonophthalmic specialists. Meanwhile, artificial intelligence (AI) has the potential to be a useful tool for the detection of fundus abnormalities, including papilledema. Even more, AI might also be useful in grading papilledema. We aim to review the latest advancement in the diagnosis of papilledema using AI and explore its potential. This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. A systematic literature search was performed on four databases (PubMed, Cochrane, ProQuest, and Google Scholar) using the Keywords "AI" and "papilledema" including their synonyms. The literature search identified 372 articles, of which six met the eligibility criteria. Of the six articles included in this review, three articles assessed the use of AI for detecting papilledema, one article evaluated the use of AI for papilledema grading using Frisen criteria, and two articles assessed the use of AI for both detection and grading. The models for both papilledema detection and grading had shown good diagnostic value, with high sensitivity (83.1%-99.82%), specificity (82.6%-98.65%), and accuracy (85.89%-99.89%). Even though studies regarding the use of AI in papilledema are still limited, AI has shown promising potential for papilledema detection and grading. Further studies will help provide more evidence to support the use of AI in clinical practice.
引用
收藏
页码:184 / 190
页数:7
相关论文
共 50 条
  • [1] Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs
    Milea, D.
    Najjar, R. P.
    Zhubo, J.
    Ting, D.
    Vasseneix, C.
    Xu, X.
    Fard, M. Aghsaei
    Fonseca, P.
    Vanikieti, K.
    Lagreze, W. A.
    La Morgia, C.
    Cheung, C. Y.
    Hamann, S.
    Chiquet, C.
    Sanda, N.
    Yang, H.
    Mejico, L. J.
    Rougier, M-B
    Kho, R.
    Thi Ha Chau, T.
    Singhal, S.
    Gohier, P.
    Clermont-Vignal, C.
    Cheng, C-Y
    Jonas, J. B.
    Yu-Wai-Man, P.
    Fraser, C. L.
    Chen, J. J.
    Ambika, S.
    Miller, N. R.
    Liu, Y.
    Newman, N. J.
    Wong, T. Y.
    Biousse, V
    NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18): : 1687 - 1695
  • [2] Artificial Intelligence to Differentiate Pediatric Pseudopapilledema and True Papilledema on Fundus Photographs
    Chang, Melinda Y.
    Heidary, Gena
    Beres, Shannon
    Pineles, Stacy L.
    Gaier, Eric D.
    Gise, Ryan
    Reid, Mark
    Avramidis, Kleanthis
    Rostami, Mohammad
    Narayanan, Shrikanth
    OPHTHALMOLOGY SCIENCE, 2024, 4 (04):
  • [3] Artificial Intelligence in the assessment of diabetic retinopathy from fundus photographs
    Gilbert, Michael J.
    Sun, Jennifer K.
    SEMINARS IN OPHTHALMOLOGY, 2020, 35 (7-8) : 325 - 332
  • [4] Quantitative Evaluation of Papilledema from Stereoscopic Color Fundus Photographs
    Tang, Li
    Kardon, Randy H.
    Wang, Jui-Kai
    Garvin, Mona K.
    Lee, Kyungmoo
    Abramoff, Michael D.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (08) : 4490 - 4497
  • [5] Artificial intelligence in glaucoma detection using color fundus photographs
    Sidhu, Zubin
    Mansoori, Tarannum
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2024, 72 (03) : 408 - 411
  • [6] The Role of Artificial Intelligence in Predicting Optic Neuritis Subtypes From Ocular Fundus Photographs
    Benard-Seguin, Etienne
    Nielsen, Christopher
    Sarhan, Abdullah
    Al-Ani, Abdullah
    Sylvestre-Bouchard, Antoine
    Waldner, Derek M.
    De Lott, Lindsey B.
    Subramaniam, Suresh
    Costello, Fiona
    JOURNAL OF NEURO-OPHTHALMOLOGY, 2024, 44 (04) : 462 - 468
  • [7] Artificial intelligence-based detection of epimacular membrane from color fundus photographs
    Shao, Enhua
    Liu, Congxin
    Wang, Lei
    Song, Dan
    Guo, Libin
    Yao, Xuan
    Xiong, Jianhao
    Wang, Bin
    Hu, Yuntao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Artificial intelligence-based detection of epimacular membrane from color fundus photographs
    Enhua Shao
    Congxin Liu
    Lei Wang
    Dan Song
    Libin Guo
    Xuan Yao
    Jianhao Xiong
    Bin Wang
    Yuntao Hu
    Scientific Reports, 11
  • [9] Grading and Quantification of Papilledema from Fundus Photographs Using Convolutional Neural Networks
    Solli, Elena
    Jui-Kai, Wang
    Branco, Joseph
    Elze, Tobias
    Kardon, Randy H.
    Pasquale, Louis
    Kupersmith, Mark J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [10] The BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) deep learning system can accurately identify pediatric papilledema on standard ocular fundus photographs
    Lin, Mung Yan
    Najjar, Raymond P.
    Tang, Zhiqun
    Cioplean, Daniela
    Dragomir, Mihaela
    Chia, Audrey
    Patil, Ajay
    Vasseneix, Caroline
    Peragallo, Jason H.
    Newman, Nancy J.
    Biousse, Valerie
    Milea, Dan
    JOURNAL OF AAPOS, 2024, 28 (01):