Artificial Intelligence to Differentiate Pediatric Pseudopapilledema and True Papilledema on Fundus Photographs

被引:2
|
作者
Chang, Melinda Y. [1 ,2 ]
Heidary, Gena [3 ,4 ]
Beres, Shannon [5 ]
Pineles, Stacy L. [6 ]
Gaier, Eric D. [3 ,4 ,7 ]
Gise, Ryan [3 ,4 ]
Reid, Mark [1 ]
Avramidis, Kleanthis [8 ]
Rostami, Mohammad [8 ,9 ]
Narayanan, Shrikanth [8 ,9 ]
机构
[1] Childrens Hosp Los Angeles, Div Ophthalmol, Los Angeles, CA USA
[2] Univ Southern Calif, Roski Eye Inst, Keck Sch Med, Los Angeles, CA USA
[3] Boston Childrens Hosp, Dept Ophthalmol, Boston, MA USA
[4] Harvard Med Sch, Massachusetts Eye & Ear Infirm, Boston, MA USA
[5] Stanford Univ, Byers Eye Inst, Dept Ophthalmol, Palo Alto, CA USA
[6] Univ Calif Los Angeles, Stein Eye Inst, Dept Ophthalmol, Los Angeles, CA USA
[7] MIT, Picower Inst Learning & Memory, Cambridge, MA USA
[8] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA USA
[9] Univ Southern Calif, Informat Sci Inst, Los Angeles, CA USA
来源
OPHTHALMOLOGY SCIENCE | 2024年 / 4卷 / 04期
基金
美国国家卫生研究院;
关键词
OPTICAL COHERENCE TOMOGRAPHY; NERVE HEAD;
D O I
10.1016/j.xops.2024.100496
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To develop and test an artificial intelligence (AI) model to aid in differentiating pediatric pseudopapilledema from true papilledema on fundus photographs. Design: Multicenter retrospective study. Subjects: A total of 851 fundus photographs from 235 children (age < 18 years) with pseudopapilledema and true papilledema. Methods: Four pediatric neuro-ophthalmologists at 4 different institutions contributed fundus photographs of children with confirmed diagnoses of papilledema or pseudopapilledema. An AI model to classify fundus photographs as papilledema or pseudopapilledema was developed using a DenseNet backbone and a tribranch convolutional neural network. We performed 10-fold cross-validation and separately analyzed an external test set. The AI model's performance was compared with 2 masked human expert pediatric neuro-ophthalmologists, who performed the same classification task. Main Outcome Measures: Accuracy, sensitivity, and specificity of the AI model compared with human experts. Results: The area under receiver operating curve of the AI model was 0.77 for the cross-validation set and 0.81 for the external test set. The accuracy of the AI model was 70.0% for the cross-validation set and 73.9% for the external test set. The sensitivity of the AI model was 73.4% for the cross-validation set and 90.4% for the external test set. The AI model's accuracy was significantly higher than human experts on the cross validation set (P < 0.002), and the model's sensitivity was significantly higher on the external test set (P = 0.0002). The specificity of the AI model and human experts was similar (56.4%-67.3%). Moreover, the AI model was significantly more sensitive at detecting mild papilledema than human experts, whereas AI and humans performed similarly on photographs of moderate-to-severe papilledema. On review of the external test set, only 1 child (with nearly resolved pseudotumor cerebri) had both eyes with papilledema incorrectly classified as pseudopapilledema. Conclusions: When classifying fundus photographs of pediatric papilledema and pseudopapilledema, our AI model achieved > 90% sensitivity at detecting papilledema, superior to human experts. Due to the high sensitivity and low false negative rate, AI may be useful to triage children with suspected papilledema requiring work-up to evaluate for serious underlying neurologic conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs
    Milea, D.
    Najjar, R. P.
    Zhubo, J.
    Ting, D.
    Vasseneix, C.
    Xu, X.
    Fard, M. Aghsaei
    Fonseca, P.
    Vanikieti, K.
    Lagreze, W. A.
    La Morgia, C.
    Cheung, C. Y.
    Hamann, S.
    Chiquet, C.
    Sanda, N.
    Yang, H.
    Mejico, L. J.
    Rougier, M-B
    Kho, R.
    Thi Ha Chau, T.
    Singhal, S.
    Gohier, P.
    Clermont-Vignal, C.
    Cheng, C-Y
    Jonas, J. B.
    Yu-Wai-Man, P.
    Fraser, C. L.
    Chen, J. J.
    Ambika, S.
    Miller, N. R.
    Liu, Y.
    Newman, N. J.
    Wong, T. Y.
    Biousse, V
    NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18): : 1687 - 1695
  • [2] The use of artificial intelligence in detecting papilledema from fundus photographs
    Anandi, Lazuardiah
    Budihardja, Brigitta Marcia
    Anggraini, Erika
    Badjrai, Rona Ali
    Nusanti, Syntia
    TAIWAN JOURNAL OF OPHTHALMOLOGY, 2023, 13 (02) : 184 - 190
  • [3] Optical Coherence Tomography to Differentiate Papilledema from Pseudopapilledema
    Gema Rebolleda
    Aki Kawasaki
    Victoria de Juan
    Noelia Oblanca
    Francisco Jose Muñoz-Negrete
    Current Neurology and Neuroscience Reports, 2017, 17
  • [4] Optical Coherence Tomography to Differentiate Papilledema from Pseudopapilledema
    Rebolleda, Gema
    Kawasaki, Aki
    de Juan, Victoria
    Oblanca, Noelia
    Jose Munoz-Negrete, Francisco
    CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2017, 17 (10)
  • [5] The BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) deep learning system can accurately identify pediatric papilledema on standard ocular fundus photographs
    Lin, Mung Yan
    Najjar, Raymond P.
    Tang, Zhiqun
    Cioplean, Daniela
    Dragomir, Mihaela
    Chia, Audrey
    Patil, Ajay
    Vasseneix, Caroline
    Peragallo, Jason H.
    Newman, Nancy J.
    Biousse, Valerie
    Milea, Dan
    JOURNAL OF AAPOS, 2024, 28 (01):
  • [6] Artificial intelligence in glaucoma detection using color fundus photographs
    Sidhu, Zubin
    Mansoori, Tarannum
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2024, 72 (03) : 408 - 411
  • [7] Artificial Intelligence in the assessment of diabetic retinopathy from fundus photographs
    Gilbert, Michael J.
    Sun, Jennifer K.
    SEMINARS IN OPHTHALMOLOGY, 2020, 35 (7-8) : 325 - 332
  • [8] Deep Learning Can Accurately Distinguish Between True Papilledema and Optic Disc Drusen On Ocular Fundus Photographs
    Biousse, Valerie
    Najjar, Raymond
    Sathianvichitr, Kanchalika
    Tang, Zhiqun
    Hamann, Steffen
    Fraser, Clare
    Fraser, Alexander
    Lin, Mung Yan
    Vasseneix, Caroline
    Peragallo, Jason
    Costello, Fiona
    Wong, Tien Yin
    Newman, Nancy
    Milea, Dan
    NEUROLOGY, 2022, 98 (18)
  • [9] Use of A-scan Ultrasound and Optical Coherence Tomography to Differentiate Papilledema From Pseudopapilledema
    Saenz, Roberto
    Cheng, Han
    Prager, Thomas C.
    Frishman, Laura J.
    Tang, Rosa A.
    OPTOMETRY AND VISION SCIENCE, 2017, 94 (12) : 1081 - 1089
  • [10] Quantitative Evaluation of Papilledema from Stereoscopic Color Fundus Photographs
    Tang, Li
    Kardon, Randy H.
    Wang, Jui-Kai
    Garvin, Mona K.
    Lee, Kyungmoo
    Abramoff, Michael D.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (08) : 4490 - 4497