Effect of ultraviolet irradiation on strength and toughness of composites of poly(lactic acid) and poly(butylene adipate-co-terephthalate) with different mass ratio

被引:0
|
作者
Guo, Zhenyu [1 ]
Song, Weiqiang [1 ,2 ]
Wei, Xueqin [1 ]
Feng, Yu [3 ]
Song, Yihong [4 ]
Cheng, Wenxi [1 ]
机构
[1] Henan Univ Technol, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[2] Henan Hairuixiang Technol Co Ltd, Pingdingshan 467100, Peoples R China
[3] Henan Univ Technol, Sch Art, Zhengzhou 450001, Peoples R China
[4] Zhengzhou Univ Aeronaut, Sch Art, Zhengzhou 450000, Henan, Peoples R China
关键词
UV irradiation; Poly(lactic acid); Poly(butylene adipate-co-terephthalate); Simultaneous enhancement; POLY(L-LACTIC ACID); CARBONATE; BLENDS; PHASE;
D O I
10.1007/s10965-023-03846-9
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Composites of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) with different mass ratio, containing nano-sized calcium carbonate, benzophenone and triallyl isocyanurate, were prepared by using a double screw extruder, and blown into films by extrusion blow molding. After ultraviolet (UV) exposure at irradiation doses (ID) of 20 J/cm2 and 40 J/cm2, the mechanical, dynamic mechanical and thermal properties of the radiated films were tested and compared with that of the unradiated. The tensile strength of the PLA/PBAT (100/0) film with single PLA phase increased after exposure to UV light, but its fracture energy decreased. In contrast, both the tensile strength and fracture energy of PLA/PBAT (70/30) film with PLA and PBAT co-continuous phases increased after exposure, but both the tensile strength and fracture energy of PLA/PBAT (50/50) film with PBAT continuous phase decreased. The glass transition temperature (Tg) of PLA/PBAT (100/0) film increased after exposure to UV light, but the Tg of both PLA/PBAT (70/30) and (50/50) films unchanged or varied within the error range. The crystallization temperature (Tc) of all the films did not changed after UV exposure, but the crystallizability significantly decreased. It suggested that UV irradiation was a simple and effective technique to simultaneously improve the strength and toughness of the film with PLA and PBAT co-continuous phases.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Analysis of oligomers in poly (butylene succinate) and poly (butylene adipate-co-terephthalate)
    Zhang, Chuanhui
    Chen, Chao
    Ouyang, Chunping
    Zeng, Xiangbin
    Guo, Zhilong
    Lai, Fenghua
    Li, Jianjun
    POLYMER BULLETIN, 2023, 80 (04) : 4487 - 4502
  • [22] The application of poly(dimethyldiallylammonium chloride) in poly(butylene adipate-co-terephthalate)/starch composites
    Yan, Xin
    Zhou, Yuying
    Liu, Chen
    Chen, Yujian
    Wu, Hao
    Wang, Hu
    Zhang, He-xin
    Yang, Jian-ming
    Yoon, Keun-Byoung
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (38)
  • [23] Properties of Poly (lactic acid) (PLA)/Poly (butylene adipate-co-terephthalate) (PBAT) Blends in the Presence of Antioxidant
    Pukpanta, P.
    Sirisinha, K.
    BIOMATERIALS AND APPLICATIONS, 2012, 506 : 126 - 129
  • [24] Analysis of oligomers in poly (butylene succinate) and poly (butylene adipate-co-terephthalate)
    Chuanhui Zhang
    Chao Chen
    Chunping Ouyang
    Xiangbin Zeng
    Zhilong Guo
    Fenghua Lai
    Jianjun Li
    Polymer Bulletin, 2023, 80 : 4487 - 4502
  • [25] Effectiveness of modified lignin on poly(butylene adipate-co-terephthalate)/poly(lactic acid) mulch film performance
    Barros, Janetty J. P.
    Oliveira, Rene R.
    Luna, Carlos B. B.
    Wellen, Renate M. R.
    Moura, Esperidiana A. B.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (46)
  • [26] Phase Structure Analysis and Composition Optimization of Poly(Lactic Acid)/Poly(Butylene Adipate-co-terephthalate) Blends
    Li, Guozhong
    Xia, Ying
    Mu, Guangqing
    Yang, Qian
    Zhou, Huimin
    Lin, Xiaojian
    Gao, Yuanmei
    Qian, Fang
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2022, 61 (03): : 413 - 424
  • [27] The carbon nanotubes effects on the morphology and properties of poly(lactic) acid/poly(butylene adipate-co-terephthalate) blends
    Xiao, Zhihua
    Li, Guili
    Liu, Chunxiao
    Li, Haimei
    Lin, Jun
    POLYMER COMPOSITES, 2022, 43 (12) : 8725 - 8736
  • [28] Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems
    Dissanayake, Pavani Dulanja
    Withana, Piumi Amasha
    Sang, Mee Kyung
    Cho, Yoora
    Park, Jeyoung
    Oh, Dongyeop X.
    Chang, Scott X.
    Lin, Carol Sze Ki
    Bank, Michael S.
    Hwang, Sung Yeon
    Ok, Yong Sik
    SOIL USE AND MANAGEMENT, 2024, 40 (02)
  • [29] Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends
    Kang, Kyoung Soo
    Kim, Bong Shik
    Jang, Woo Yeul
    Shin, Boo Young
    POLYMER-KOREA, 2009, 33 (02) : 164 - 168
  • [30] Wood plastic composites based on recycled poly(ethylene terephthalate) and poly(butylene adipate-co-terephthalate)
    Chaiwutthinan, Phasawat
    Pimpong, Aphichat
    Larpkasemsuk, Amnouy
    Chuayjuljit, Saowaroj
    Boonmahitthisud, Anyaporn
    JOURNAL OF METALS MATERIALS AND MINERALS, 2019, 29 (02): : 87 - 97