An Energy Efficient All-Digital Time-Domain Compute-in-Memory Macro Optimized for Binary Neural Networks

被引:2
|
作者
Lou, Jie [1 ]
Freye, Florian [1 ]
Lanius, Christian [1 ]
Gemmeke, Tobias [1 ]
机构
[1] Rhein Westfal TH Aachen, Chair Integrated Digital Syst & Circuit Design, D-52074 Aachen, Germany
关键词
Time-domain; compute-in-memory; binary neural network; all-digital implementation; double-edge operation; wave-pipelining; CNN ACCELERATOR; SRAM;
D O I
10.1109/TCSI.2023.3323205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The deployment of neural networks on edge devices has created a growing need for energy-efficient computing. In this paper, we propose an all-digital standard cell-based time-domain compute-in-memory (TDCIM) macro for binary neural networks (BNNs) that is compatible with commercial digital design flow. The TDCIM macro utilizes multiple computing chains that share one threshold chain, and supports double-edge operation, parallel computing and data reuse. Time-domain wave-pipelining technique is introduced to enhance throughput while preserving accuracy. Regular placement (RP) and custom routing (CR) are employed during place and route (P&R) to reduce systematic variations. We show computing delay, POOL computation accuracy, and network test accuracy at different voltages, indicating that the proposed TDCIM macro can maintain high accuracy under PVT variations. We implemented two versions of the TDCIM macro in 22nm FDSOI technology using foundry-provided delay cells DLY40 and DLY60, respectively. At a voltage of 0.5V, the TDCIM macro achieved an energy efficiency of 1.2 (1.05) POPS/W for DLY40 (DLY60), while maintaining a baseline accuracy of 98.9% on the MNIST dataset for both designs.
引用
收藏
页码:287 / 298
页数:12
相关论文
共 50 条
  • [21] Design of Current-Mode 8T SRAM Compute-In-Memory Macro for Processing Neural Networks
    Yu, Chengshuo
    Yoo, Taegeun
    Kim, Tony Tae-Hyoung
    Kim, Bongjin
    Chuan, Kevin Chai Tshun
    2020 17TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC 2020), 2020, : 175 - 176
  • [22] An Efficient Two-Stage Pipelined Compute-in-Memory Macro for Accelerating Transformer Feed-Forward Networks
    Zhang, Heng
    Yin, Wenhe
    He, Sunan
    Du, Yuan
    Du, Li
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024, 32 (10) : 1889 - 1899
  • [23] All-Digital Linearity Enhancement Technique for Time-Domain Smart Temperature Sensors
    Chen, Chun-Chi
    Chen, Chao-Lieh
    Lin, Yi
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 1247 - 1250
  • [24] A 22-nm All-Digital Time-Domain Neural Network Accelerator for Precision In-Sensor Processing
    Mohey, Ahmed M.
    Leslin, Jelin
    Singh, Gaurav
    Kosunen, Marko
    Ryynanen, Jussi
    Andraud, Martin
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024, 32 (12) : 2220 - 2231
  • [25] A 12.08-TOPS/W All-Digital Time-Domain CNN Engine Using Bi-Directional Memory Delay Lines for Energy Efficient Edge Computing
    Sayal, Aseem
    Nibhanupudi, S. S. Teja
    Fathima, Shirin
    Kulkarni, Jaydeep P.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (01) : 60 - 75
  • [26] A Resonant Time-Domain Compute-in-Memory (rTD-CiM) ADC-Less Architecture for MAC Operations
    Challagundla, Dhandeep
    Bezzam, Ignatius
    Islam, Riadul
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 268 - 271
  • [27] A 65-nm 8T SRAM Compute-in-Memory Macro With Column ADCs for Processing Neural Networks
    Yu, Chengshuo
    Yoo, Taegeun
    Chai, Kevin Tshun Chuan
    Kim, Tony Tae-Hyoung
    Kim, Bongjin
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (11) : 3466 - 3476
  • [28] Time-Domain Modeling of All-Digital PLLs to Single-Event Upset Perturbations
    Chen, Y. P.
    Massengill, L. W.
    Sternberg, A. L.
    Zhang, E. X.
    Kauppila, J. S.
    Yao, M.
    Amort, A. L.
    Bhuva, B. L.
    Holman, W. T.
    Loveless, T. D.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (01) : 311 - 317
  • [29] Time-Based Compute-in-Memory for Cryogenic Neural Network With Successive Approximation Register Time-to-Digital Converter
    Kang, Dong Suk
    Yu, Shimeng
    IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2022, 8 (02): : 128 - 133
  • [30] Time-Domain Computing in Memory Using Spintronics for Energy-Efficient Convolutional Neural Network
    Zhang, Yue
    Wang, Jinkai
    Lian, Chenyu
    Bai, Yining
    Wang, Guanda
    Zhang, Zhizhong
    Zheng, Zhenyi
    Chen, Lei
    Zhang, Kun
    Sirakoulis, Georgios
    Zhang, Youguang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (03) : 1193 - 1205