High-order phase reduction for coupled 2D oscillators

被引:4
|
作者
Mau, Erik T. K. [1 ]
Rosenblum, Michael [1 ]
Pikovsky, Arkady [1 ]
机构
[1] Univ Potsdam, Dept Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam Golm, Germany
关键词
D O I
10.1063/5.0169008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Phase reduction is a general approach to describe coupled oscillatory units in terms of their phases, assuming that the amplitudes are enslaved. The coupling should be small for such reduction, but one also expects the reduction to be valid for finite coupling. This paper presents a general framework, allowing us to obtain coupling terms in higher orders of the coupling parameter for generic two-dimensional oscillators and arbitrary coupling terms. The theory is illustrated with an accurate prediction of Arnold's tongue for the van der Pol oscillator exploiting higher-order phase reduction.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A 2D parallel high-order sliding and deforming spectral difference method
    Zhang, Bin
    Liang, Chunlei
    Yang, Jingjing
    Rong, Yongwu
    COMPUTERS & FLUIDS, 2016, 139 : 184 - 196
  • [32] Parametric estimation of 2D cubic phase signals using high-order Wigner distribution with genetic algorithm
    Marko Simeunović
    Igor Djurović
    Alen Pelinković
    Multidimensional Systems and Signal Processing, 2019, 30 : 451 - 464
  • [33] Parametric estimation of 2D cubic phase signals using high-order Wigner distribution with genetic algorithm
    Simeunovic, Marko
    Djurovic, Igor
    Pelinkovic, Alen
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2019, 30 (01) : 451 - 464
  • [34] A numerical implementation for the high-order 2D virtual element method in MATLAB
    Herrera, Cesar
    Corrales-Barquero, Ricardo
    Arroyo-Esquivel, Jorge
    Calvo, Juan G.
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1707 - 1721
  • [35] Precise High-order Meshing of 2D Domains with Rational Bezier Curves
    Yang, Jinlin
    Liu, Shibo
    Chai, Shuangming
    Liu, Ligang
    Fu, Xiao-Ming
    COMPUTER GRAPHICS FORUM, 2022, 41 (05) : 79 - 88
  • [36] Reconfigurable high-order exceptional points in coupled optical parametric oscillators for enhanced sensing
    Guo, Zehui
    Xie, Zhihao
    Li, Zhenhua
    Li, Tao
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (25)
  • [37] High-order subharmonic parametric resonance of multiple nonlinearly coupled micromechanical nonlinear oscillators
    Zhu, J.
    Ru, C. Q.
    Mioduchowski, A.
    ACTA MECHANICA, 2010, 212 (1-2) : 69 - 81
  • [38] High-order subharmonic parametric resonance of multiple nonlinearly coupled micromechanical nonlinear oscillators
    J. Zhu
    C. Q. Ru
    A. Mioduchowski
    Acta Mechanica, 2010, 212 : 69 - 81
  • [39] Phase clusters in 2D arrays of nonidentical oscillators
    Liu, ZH
    Hu, B
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (12): : 3137 - 3143
  • [40] High-order dispersion in Kerr comb oscillators
    Bao, Changjing
    Taheri, Hossein
    Zhang, Lin
    Matsko, Andrey
    Yan, Yan
    Liao, Peicheng
    Maleki, Lute
    Willner, Alan E.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (04) : 715 - 725