DETERMINING PHENOLOGICAL PHASES OF SELECTED TREE SPECIES WITH MODIS TIME-SERIES DATA

被引:0
|
作者
Kanjir, Urska [1 ]
Skudnik, Mitja [2 ,3 ]
Kokalj, Ziga [1 ]
机构
[1] Slovenske Akademije Znanosti Umetnosti, Inst Antropoloske Prostorske Studije, Znanstvenoraziskovalni Ctr, Novi trg 2, Ljubljana 1000, Slovenia
[2] Gozdarski Inst Slovenije, Oddelek Nacrtovanje Monitoring Gozdov Krajine, Vecna pot 2, Ljubljana 1000, Slovenia
[3] Biotehniska Fakulteta, Oddelek Gozdarstvo Obnovlj Gozdne Vire, Vecna pot 83, Ljubljana 1000, Slovenia
关键词
leaf phenology; seasonal phases; time series; NDVI; MODIS; FOREST MONITORING PLOTS; INTERANNUAL VARIATION; VEGETATION PHENOLOGY; LANDSAT; VARIABILITY; SEASON; NDVI;
D O I
10.15292/geodetski-vestnik.2023.02.165-180
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
This study investigates the usefulness of MODIS (Moderate Resolution Imaging Spectroradiometer) satellite imagery for determining the start, end, and length of the growing season of selected deciduous tree species. Vegetation indices derived from satellite imagery provide consistent observations in a similar temporal sequence and are useful for determining phenological phases. Using time series of NDVI (Normalised Difference Vegetation Index) vegetation index from MODIS imagery, phenological patterns were detected at several points in Slovenia and different approaches to determine seasonal phases were compared. In addition, the derived seasonal phases with field phenological and meteorological data were also compared. It has been found that the success of determining phenological phases from satellite imagery depends on many factors: the spatial resolution of the satellite data, the smoothing method for the time series data, the method for determining phenological parameters, and the field data used for comparison. The results of the study show that phenological phases determined by using MODIS data with a resolution of 250 m best match the phenological data maintained by the Slovenian Forestry Institute using the mean seasonal values method.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [21] Derivation of phenological metrics by function fitting to time-series of Spectral Shape Indexes AS1 and AS2: Mapping cotton phenological stages using MODIS time series
    Palacios-Orueta, Alicia
    Huesca, Margarita
    Whiting, Michael L.
    Litago, Javier
    Khanna, Shruti
    Garcia, Monica
    Ustin, Susan L.
    REMOTE SENSING OF ENVIRONMENT, 2012, 126 : 148 - 159
  • [22] UNSUPERVISED SEQUENTIAL CLASSIFICATION OF MODIS TIME-SERIES
    Grobler, T. L.
    Kleynhans, W.
    Salmon, B. P.
    Burger, C. N.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2244 - 2247
  • [23] A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
    Zeng, Linglin
    Wardlow, Brian D.
    Wang, Rui
    Shan, Jie
    Tadesse, Tsegaye
    Hayes, Michael J.
    Li, Deren
    REMOTE SENSING OF ENVIRONMENT, 2016, 181 : 237 - 250
  • [24] Classification of Vegetation in North Tibet Plateau Based on MODIS Time-Series Data
    LU Yuan1
    2. School of Resource and Environmental Sciences
    Wuhan University Journal of Natural Sciences, 2008, (03) : 273 - 278
  • [25] Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data
    Dangui Hu
    Hong Shu
    Hongda Hu
    Jianhui Xu
    Cluster Computing, 2017, 20 : 347 - 357
  • [26] Spatiotemporal regression Kriging to predict precipitation using time-series MODIS data
    Hu, Dangui
    Shu, Hong
    Hu, Hongda
    Xu, Jianhui
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (01): : 347 - 357
  • [27] MONITORING VEGETATION PHENOLOGY IN CHINA USING TIME-SERIES MODIS LAI DATA
    Xia, Chuanfu
    Li, Jing
    Liu, Qinhuo
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 48 - 51
  • [28] Extraction of agricultural phenological parameters of Sri Lanka using MODIS, NDVI time series data
    Jayawardhana, W. G. N. N.
    Chathurange, V. M. I.
    INTERNATIONAL CONFERENCE OF SABARAGAMUWA UNIVERSITY OF SRI LANKA 2015 (ICSUSL 2015), 2016, 6 : 235 - 241
  • [29] A review of vegetation phenological metrics extraction using time-series, multispectral satellite data
    Zeng, Linglin
    Wardlow, Brian D.
    Xiang, Daxiang
    Hu, Shun
    Li, Deren
    REMOTE SENSING OF ENVIRONMENT, 2020, 237
  • [30] Mapping tree species in temperate deciduous woodland using time-series multi-spectral data
    Hill, R. A.
    Wilson, A. K.
    George, M.
    Hinsley, S. A.
    APPLIED VEGETATION SCIENCE, 2010, 13 (01) : 86 - 99