The Calculation and Simulation of the Price of Anarchy for Network Formation Games

被引:0
|
作者
Lichter, Shaun [1 ]
Griffin, Christopher [2 ]
Friesz, Terry [3 ]
机构
[1] Morgan Stanley, Fraud Analyt, 1300 Thames St, Baltimore, MD 21231 USA
[2] Penn State Univ, Appl Res Lab, POB 30, State Coll, PA 16804 USA
[3] Penn State Univ, Harold & Inge Marcus Dept Ind & Mfg Engn, University Pk, PA 16802 USA
来源
NETWORKS & SPATIAL ECONOMICS | 2023年 / 23卷 / 03期
关键词
Price of anarchy; Network formation; Equilibrium; Integer programming; MODEL;
D O I
10.1007/s11067-023-09588-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We model the formation of networks as the result of a game where by players act selfishly to get the portfolio of links they desire most. The integration of player strategies into the network formation model is appropriate for organizational networks because in these smaller networks, dynamics are not random, but the result of intentional actions carried through by players maximizing their own objectives. This model is a better framework for the analysis of influences upon a network because it integrates the strategies of the players involved. We present an Integer Program that calculates the price of anarchy of this game by finding the worst stable graph and the best coordinated graph for this game. We simulate the formation of the network and calculated the simulated price of anarchy, which we find tends to be rather low.
引用
收藏
页码:581 / 610
页数:30
相关论文
共 50 条
  • [41] Brief Announcement: The Price of Anarchy for Distributed Network Formation in an Adversary Model
    Kliemann, Lasse
    PODC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2010, : 229 - 230
  • [42] On the Robustness of the Approximate Price of Anarchy in Generalized Congestion Games
    Bilo, Vittorio
    ALGORITHMIC GAME THEORY, SAGT 2016, 2016, 9928 : 93 - 104
  • [43] Optimizing the Price of Anarchy in Concave Cost Sharing Games
    Marden, Jason R.
    Philips, Matthew
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5237 - 5242
  • [44] A Unified Framework for Strong Price of Anarchy in Clustering Games
    Feldman, Michal
    Friedler, Ophir
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 2015, 9135 : 601 - 613
  • [45] Strong Price of Anarchy, Utility Games and Coalitional Dynamics
    Bachrach, Yoram
    Syrgkanis, Vasilis
    Tardos, Eva
    Vojnovic, Milan
    ALGORITHMIC GAME THEORY, SAGT 2014, 2014, 8768 : 218 - 230
  • [46] On the robustness of the approximate price of anarchy in generalized congestion games
    Bilo, Vittorio
    THEORETICAL COMPUTER SCIENCE, 2022, 906 : 94 - 113
  • [47] Optimal Price of Anarchy in Cost-Sharing Games
    Chandan, Rahul
    Paccagnan, Dario
    Marden, Jason R.
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2277 - 2282
  • [48] A convergence analysis of the price of anarchy in atomic congestion games
    Wu, Zijun
    Moehring, Rolf H.
    Ren, Chunying
    Xu, Dachuan
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 937 - 993
  • [49] A geometric approach to the price of anarchy in nonatomic congestion games
    Correa, Jose R.
    Schulz, Andreas S.
    Stier-Moses, Nicolas E.
    GAMES AND ECONOMIC BEHAVIOR, 2008, 64 (02) : 457 - 469
  • [50] Local smoothness and the price of anarchy in splittable congestion games
    Roughgarden, Tim
    Schoppmann, Florian
    JOURNAL OF ECONOMIC THEORY, 2015, 156 : 317 - 342