Explainable Deep Learning-Based Approach for Multilabel Classification of Electrocardiogram

被引:27
|
作者
Ganeshkumar, M. [1 ]
Ravi, Vinayakumar [2 ]
Sowmya, V. [1 ]
Gopalakrishnan, E. A. [1 ]
Soman, K. P. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Ctr Computat Engn & Networking CEN, Coimbatore 601103, Tamil Nadu, India
[2] Prince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar 34754, Saudi Arabia
关键词
Electrocardiography; Diseases; Neural networks; Heart; Computed tomography; Convolutional neural networks; Feature extraction; Deep learning; electrocardiogram (ECG); explainability; explainable AI; multilabel classification; AMERICAN-COLLEGE; RHYTHM; ECG; ASSOCIATION; CARDIOLOGY; COMMITTEE; SOCIETY;
D O I
10.1109/TEM.2021.3104751
中图分类号
F [经济];
学科分类号
02 ;
摘要
Recently computer-aided diagnosis methods have been widely adopted to aid doctors in disease diagnosis making their decisions more reliable and error-free. Electrocardiogram (ECG) is the most commonly used, noninvasive diagnostic tool for investigating various cardiovascular diseases. In real life, patients suffer from more than one heart disease at a time. So any practical automated heart disease diagnosis system should identify multiple heart diseases present in a single ECG signal. In this article, we propose a novel deep learning-based method for the multilabel classification of ECG signals. The proposed method can accurately identify up to two labels of an ECG signal pertaining to eight rhythm or morphological abnormalities of the heart and also the normal heart condition. Also, the black-box nature of deep learning models prevents them from being applied to high-risk decisions like the automated heart disease diagnosis. So in this article, we also establish an explainable artificial intelligence (XAI) framework for ECG classification using class activation maps obtained from the Grad-CAM technique. In the proposed method, we train a convolutional neural network (CNN) with constructed ECG matrices. With the experiments conducted, we establish that training the CNN by taking only one label for each ECG signal data point is enough for the network to learn the features of an ECG point with multilabel information in it (multiple heart diseases at the same time). During classification, we apply thresholding on the output probabilities of the softmax layer of our CNN, to obtain the multilabel classification of ECG signals.We trained the model with 6311 ECG records and tested the model with 280 ECG records. During testing, the model achieved a subset accuracy of 96.2% and a hamming loss of 0.037 and a precision of 0.986 and a recall of 0.949 and an F1-score of 0.967. Considering the fact that the model has performed very well in all the metrics of multilabel classification, the model can be directly used as a practical tool for automated heart disease diagnosis.
引用
收藏
页码:2787 / 2799
页数:13
相关论文
共 50 条
  • [41] Deep learning-based Cervical Cancer Classification
    Khoulqi, Ichrak
    Idrissi, Najlae
    2022 INTERNATIONAL CONFERENCE ON TECHNOLOGY INNOVATIONS FOR HEALTHCARE, ICTIH, 2022, : 30 - 33
  • [42] Deep learning-based classification and segmentation for scalpels
    Su, Baiquan
    Zhang, Qingqian
    Gong, Yi
    Xiu, Wei
    Gao, Yang
    Xu, Lixin
    Li, Han
    Wang, Zehao
    Yu, Shi
    Hu, Yida David
    Yao, Wei
    Wang, Junchen
    Li, Changsheng
    Tang, Jie
    Gao, Li
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 855 - 864
  • [43] Deep learning-based software bug classification
    Meher, Jyoti Prakash
    Biswas, Sourav
    Mall, Rajib
    INFORMATION AND SOFTWARE TECHNOLOGY, 2024, 166
  • [44] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [45] Deep Learning-Based Classification of Diabetic Retinopathy
    Huang, Zhenjia
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 371 - 375
  • [46] Deep Learning-Based Water Crystal Classification
    Thi, Hien Doan
    Andres, Frederic
    Quoc, Long Tran
    Emoto, Hiro
    Hayashi, Michiko
    Katsumata, Ken
    Oshide, Takayuki
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [47] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864
  • [48] An evolutionary explainable deep learning approach for Alzheimer's MRI classification
    Shojaei, Shakila
    Abadeh, Mohammad Saniee
    Momeni, Zahra
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 220
  • [49] Deep learning-based microarray cancer classification and ensemble gene selection approach
    Rezaee, Khosro
    Jeon, Gwanggil
    Khosravi, Mohammad R.
    Attar, Hani H.
    Sabzevari, Alireza
    IET SYSTEMS BIOLOGY, 2022, 16 (3-4) : 120 - 131
  • [50] A Cost-Sensitive Deep Learning-Based Approach for Network Traffic Classification
    Telikani, Akbar
    Gandomi, Amir H.
    Choo, Kim-Kwang Raymond
    Shen, Jun
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (01): : 661 - 670