High-Resolution Feature Pyramid Network for Small Object Detection on Drone View

被引:19
|
作者
Chen, Zhaodong [1 ,2 ]
Ji, Hongbing [1 ,2 ]
Zhang, Yongquan [1 ,2 ]
Zhu, Zhigang [1 ,2 ]
Li, Yifan [1 ,2 ]
机构
[1] Xidian Univ, Xian Key Lab Intelligent Spectrum Sensing & Inform, Xian 710071, Peoples R China
[2] Xidian Univ, Shaanxi Union Res Ctr Univ & Enterprise Intelligen, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection on drone view; small object detector; high-resolution feature; multiple-in-single-out feature pyramid network; CONTEXT;
D O I
10.1109/TCSVT.2023.3286896
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Object detection has developed rapidly with the help of deep learning technologies recent years. However, object detection on drone view remains challenging due to two main reasons: (1) It is difficult to detect small-scale objects lacking detailed information. (2) The diversity of camera angles of drones brings dramatic differences in object scale. Although feature pyramid network (FPN) alleviates the problem caused by scale difference to some extent, it also retains some worthless features, which wastes resources and slows down the speed. In this work, we propose a novel High-Resolution Feature Pyramid Network (HR-FPN) to improve the detection accuracy of small-scale objects and avoid feature redundancy. The key components of HR-FPN include a high-resolution feature alignment module (HRFA), a high-resolution feature fusion module (HRFF) and a multi-scale decoupled head (MSDH). HRFA feeds multi-scale features from backbone into parallel resampling channels to obtain high-resolution features at the same scale. HRFF establishes a bottom-up path to distribute context-rich low-level semantic information to all layers that are then aggregated into classification feature and localization feature. MSDH cope with the scale difference of objects by predicting the categories and locations corresponding to different scales of objects separately. Moreover, we train model by scale-weighted loss to focus more on small-scale objects. Extensive experiments and comprehensive evaluations demonstrate the effectiveness and advancement of our approach.
引用
收藏
页码:475 / 489
页数:15
相关论文
共 50 条
  • [41] High-Resolution Iterative Feedback Network for Camouflaged Object Detection
    Hu, Xiaobin
    Wang, Shuo
    Qin, Xuebin
    Dai, Hang
    Ren, Wenqi
    Luo, Donghao
    Tai, Ying
    Shao, Ling
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 881 - 889
  • [42] Enhancement-fusion feature pyramid network for object detection
    Dong, Shifeng
    Wang, Rujing
    Du, Jianming
    Jiao, Lin
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (01)
  • [43] Reverse Densely Connected Feature Pyramid Network for Object Detection
    Xin, Yongjian
    Wang, Shuhui
    Li, Liang
    Zhang, Weigang
    Huang, Qingming
    COMPUTER VISION - ACCV 2018, PT V, 2019, 11365 : 530 - 545
  • [44] Weighted parallel decoupled feature pyramid network for object detection
    Han, Bo
    He, Lihuo
    Ke, Junjie
    Tang, Chenwei
    Gao, Xinbo
    NEUROCOMPUTING, 2024, 593
  • [45] A Novel Pyramid Network with Feature Fusion and Disentanglement for Object Detection
    Yu, Guoyi
    Wu, You
    Xiao, Jing
    Cao, Yang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [46] SAFPN: a full semantic feature pyramid network for object detection
    Gaihua Wang
    Qi Li
    Nengyuan Wang
    Hong Liu
    Pattern Analysis and Applications, 2023, 26 : 1729 - 1739
  • [47] An Enhanced Feature Pyramid Object Detection Network for Autonomous Driving
    Wu, Yutian
    Tang, Shuming
    Zhang, Shuwei
    Ogai, Harutoshi
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [48] A Dense Feature Pyramid Network for Remote Sensing Object Detection
    Sun, Yu
    Liu, Wenkai
    Gao, Yangte
    Hou, Xinghai
    Bi, Fukun
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [49] An attention-based feature pyramid network for single-stage small object detection
    Lin Jiao
    Chenrui Kang
    Shifeng Dong
    Peng Chen
    Gaoqiang Li
    Rujing Wang
    Multimedia Tools and Applications, 2023, 82 : 18529 - 18544
  • [50] An attention-based feature pyramid network for single-stage small object detection
    Jiao, Lin
    Kang, Chenrui
    Dong, Shifeng
    Chen, Peng
    Li, Gaoqiang
    Wang, Rujing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (12) : 18529 - 18544