A heat-triggered triboelectric nanogenerator for self-powered wireless fire alarm

被引:2
|
作者
Lin, Xiaobo [1 ]
Su, Kangyu [1 ]
Yang, Lanxin [1 ]
Xing, Chenyang [1 ]
Peng, Zhengchun [1 ]
Meng, Bo [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
energy harvesting; triboelectric nanogenerator; self-powered system; wireless sensor; MECHANICAL ENERGY;
D O I
10.1088/1361-6463/acff02
中图分类号
O59 [应用物理学];
学科分类号
摘要
Power supply is playing an increasingly important role in the rapidly developing era of the Internet of Things. Achieving a sustainable and clean power supply for electronic devices is an urgent and challenging task. In this study, we present a heat-triggered triboelectric nanogenerator (TENG) and develop a self-powered fire alarm system to achieve an early warning without an external power supply. A TENG comprises a gear system that can utilize the elastic potential energy of a spring. A wax block was used as a heat trigger. When melted at high temperatures, the TENG will be triggered to work and generate considerable electric energy. Within a single operation cycle of approximately 6 s, a 22 mu F capacitor can be charged up to 3.7 V. Such electrical energy is sufficient to drive a wireless transmission module through an automatic switching circuit. Overall, this study provides a feasible approach for a self-powered wireless warning system in power-shortage areas.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Advanced triboelectric nanogenerator based self-powered electrochemical system
    Xuan, Ningning
    Song, Chunhui
    Cheng, Gang
    Du, Zuliang
    Chemical Engineering Journal, 2024, 481
  • [42] Self-Powered Landslide Displacement Sensor Based on Triboelectric Nanogenerator
    Zhang, Yongquan
    Chuan, Wu
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18042 - 18049
  • [43] Fully self-powered electrocaloric cooling/heating with triboelectric nanogenerator
    Li, Jiayu
    Liu, Boxun
    Liang, Chuangjian
    Wan, Lingyu
    Wei, Wenjuan
    Gao, Hongqiang
    Li, Mingyang
    Li, Yahui
    Ding, Wangyang
    Qu, Hang
    Wen, Honggui
    Yu, Fang
    Yao, Huilu
    Liu, Guanlin
    Peng, Biaolin
    Lu, Xiang
    Nano Energy, 2022, 101
  • [44] A Self-Powered Basketball Training Sensor Based on Triboelectric Nanogenerator
    Zhao, Zhenyu
    Wu, Chuan
    Zhou, Qing
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [45] A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System
    Gao, Feng
    Yao, Junwei
    Li, Cheng
    Zhao, Lianwen
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (06) : 3308 - 3316
  • [46] Self-Powered Speed Sensor for Turbodrills Based on Triboelectric Nanogenerator
    Wu, Chuan
    Fan, Chenxing
    Wen, Guojun
    SENSORS, 2019, 19 (22)
  • [47] A self-powered absolute shaft encoder based on triboelectric nanogenerator
    Lee, Yongjoo
    Kang, Seong Gu
    Jeong, Jaehwa
    NANO ENERGY, 2022, 98
  • [48] Advanced triboelectric nanogenerator based self-powered electrochemical system
    Xuan, Ningning
    Song, Chunhui
    Cheng, Gang
    Du, Zuliang
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [49] Smart wearable triboelectric nanogenerator for self-powered bioelectronics and therapeutics
    Kaur, Akshpreet
    Gupta, Ankur
    Ying, Cuifeng
    Rahmani, Mohsen
    Sapra, Gaurav
    MICROELECTRONIC ENGINEERING, 2023, 275
  • [50] A Self-Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator
    Wu, Ying
    Jing, Qingshen
    Chen, Jun
    Bai, Peng
    Bai, Junjie
    Zhu, Guang
    Su, Yuanjie
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (14) : 2166 - 2174