Acute toxicity prediction after breast radiotherapy using machine-learning and spectrophotometry

被引:0
|
作者
Cilla, S. [1 ]
Romano, C. [1 ]
Macchia, G. [2 ]
Boccardi, M. [2 ]
Pezzulla, D. [2 ]
Buwenge, M. [3 ]
Di Castelnuovo, A. [4 ]
Bracone, F. [5 ]
De Curtis, A. [5 ]
Cerletti, C. [5 ]
Iacoviello, L. [6 ]
Donati, M. B. [5 ]
Deodato, F. [2 ]
Morganti, A. G. [7 ]
机构
[1] Univ Cattolica Sacro Cuore, Med Phys Unit, Gemelli Molise Hosp, Campobasso, Italy
[2] Univ Cattolica Sacro Cuore, Radiat Oncol Unit, Gemelli Molise Hosp, Campobasso, Italy
[3] IRCCS Azienda Osped Univ Bologna, Radiat Oncol, Bologna, Italy
[4] Mediterranea Cardioctr, Dept Epidemiol & Prevent, Naples, Italy
[5] IRCCS NEUROMED, Dept Epidemiol & Prevent, Pozzilli, Italy
[6] Univ Insubria, Dept Med & Surg, EPIMED Res Ctr, Varese, Italy
[7] Bologna Univ, Dept Expt Diagnost & Specialty Med DIMES, Alma Mater Studiorum, Bologna, Italy
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO-2097
引用
收藏
页码:S1880 / S1881
页数:2
相关论文
共 50 条
  • [31] Prediction of Dynamic Toxicity of Nanoparticles Using Machine Learning
    Khokhlov, Ivan
    Legashev, Leonid
    Bolodurina, Irina
    Shukhman, Alexander
    Shoshin, Daniil
    Kolesnik, Svetlana
    TOXICS, 2024, 12 (10)
  • [32] Toxicity prediction of nanoparticles using machine learning approaches
    Ahmadi, Mahnaz
    Ayyoubzadeh, Seyed Mohammad
    Ghorbani-Bidkorpeh, Fatemeh
    TOXICOLOGY, 2024, 501
  • [33] Prediction of bacterial associations with plants using a supervised machine-learning approach
    Manuel Martinez-Garcia, Pedro
    Lopez-Solanilla, Emilia
    Ramos, Cayo
    Rodriguez-Palenzuela, Pablo
    ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (12) : 4847 - 4861
  • [34] Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
    Montesinos Lopez, Osval A.
    Mosqueda Gonzalez, Brandon Alejandro
    Montesinos Lopez, Abelardo
    Crossa, Jose
    GENES, 2023, 14 (05)
  • [35] Prediction of Post-Intubation Tachycardia Using Machine-Learning Models
    Kim, Hanna
    Jeong, Young-Seob
    Kang, Ah Reum
    Jung, Woohyun
    Chung, Yang Hoon
    Koo, Bon Sung
    Kim, Sang Hyun
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [36] Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model
    Wang, Feng
    Huang, Yuanhanqing
    Xia, Yong
    Zhang, Wei
    Fang, Kun
    Zhou, Xiaoyu
    Yu, Xiaofei
    Cheng, Xin
    Li, Gang
    Wang, Xiaoping
    Luo, Guojun
    Wu, Danhong
    Liu, Xueyuan
    Campbell, Bruce C. V.
    Dong, Qiang
    Zhao, Yuwu
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2020, 13
  • [37] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [38] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646
  • [39] A machine-learning algorithm for wind gust prediction
    Sallis, P. J.
    Claster, W.
    Hernandez, S.
    COMPUTERS & GEOSCIENCES, 2011, 37 (09) : 1337 - 1344
  • [40] Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective
    Blank, Celine
    Wildeboer, Rogier Rudolf
    DeCroo, Ilse
    Tilleman, Kelly
    Weyers, Basiel
    de Sutter, Petra
    Mischi, Massimo
    Schoot, Benedictus Christiaan
    FERTILITY AND STERILITY, 2019, 111 (02) : 318 - 326