Response Time of Vegetation to Drought in Weihe River Basin, China

被引:5
|
作者
Fan, Jingjing [1 ,2 ]
Wei, Shibo [1 ,2 ]
Liu, Guanpeng [1 ,2 ]
Zhou, Xiong [3 ]
Li, Yunyun [4 ]
Wu, Chenyu [1 ,2 ]
Xu, Fanfan [1 ,2 ]
机构
[1] Hebei Univ Engn, Coll Water Resources & Hydropower, Handan 056038, Peoples R China
[2] Hebei Univ Engn, Hebei Key Lab Intelligent Water Conservancy, Handan 056038, Peoples R China
[3] Beijing Normal Univ, China Canada Ctr Energy Environm & Ecol Res, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing 100875, Peoples R China
[4] Coll Resources & Environm Engn, Mianyang Teachers Coll, Mianyang 621000, Peoples R China
基金
中国国家自然科学基金;
关键词
standardized precipitation evapotranspiration index (SPEI); standardized precipitation index (SPI); normalized difference vegetation index (NDVI); Weihe River basin; SCALES; PRECIPITATION; IMPACTS;
D O I
10.3390/atmos14060938
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Frequent droughts may have negative influences on the ecosystem (i.e., terrestrial vegetation) under a warming climate condition. In this study, the linear regression method was first used to analyze trends in vegetation change (normalized difference vegetation index (NDVI)) and drought indices (Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)). The Pearson Correlation analysis was then used to quantify drought impacts on terrestrial vegetation in the Weihe River Basin (WRB); in particular, the response time of vegetation to multiple time scales of drought (RTVD) in the WRB was also investigated. The trend analysis results indicated that 89.77% of the area of the basin showed a significant increasing trend in NDVI from 2000 to 2019. There were also significant variations in NDVI during the year, with the highest rate in June (0.01) and the lowest rate in January (0.002). From 2000 to 2019, SPI and SPEI at different time scales in the WRB showed an overall increasing trend, which indicated that the drought was alleviated. The results of correlation analysis showed that the response time of vegetation to drought in the WRB from 2000 to 2019 was significantly spatially heterogeneous. For NDVI to SPEI, the response time of 12 months was widely distributed in the north; however, the response time of 24 months was mainly distributed in the middle basin. The response time of NDVI to SPI was short and was mainly concentrated at 3 and 6 months; in detail, the response time of 3 months was mainly distributed in the east, while a response time of 6 months was widely distributed in the west. In autumn and winter, the response time of NDVI to SPEI was longer (12 and 24 months), while the response time of NDVI to SPI was shorter (3 months). From the maximum correlation coefficient, the response of grassland to drought (SPEI and SPI) at different time scales (i.e., 6, 12, and 24 months) was higher than that of cultivated land, forestland, and artificial surface. The results may help improve our understanding of the impacts of climatic changes on vegetation cover.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Comprehensive evaluation of the water environment carrying capacity of a river basin: a case study of the Weihe River Basin in China
    Yan, Buqing
    Wang, Yiqi
    Li, Guoping
    Ding, Xiaohui
    WATER POLICY, 2022, 24 (01) : 31 - 48
  • [42] Vegetation's Dynamic Changes, Spatial Trends, and Responses to Drought in the Yellow River Basin, China
    Wang, Fei
    Men, Ruyi
    Yan, Shaofeng
    Lai, Hexin
    Wang, Zipeng
    Feng, Kai
    Gao, Shikai
    Li, Yanbin
    Guo, Wenxian
    Qu, Yanping
    AGRONOMY-BASEL, 2024, 14 (08):
  • [43] Effects of different types of drought on vegetation in Huang-Huai-Hai River Basin, China
    Shi, Xiaoliang
    Ding, Hao
    Wu, Mengyue
    Zhang, Na
    Shi, Mengqi
    Chen, Fei
    Li, Yi
    ECOLOGICAL INDICATORS, 2022, 144
  • [44] Response of vegetation dynamic change to multi-scale drought stress in the high-latitude Nenjiang River basin in China
    Zhu, Guanglei
    Zhao, Chunzi
    Tong, Shouzheng
    Zhu, Weihong
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2022, 10
  • [45] Vegetation photosynthesis changes and response to water constraints in the Yangtze River and Yellow River Basin, China
    Zhao, Anzhou
    Wang, Dongli
    Xiang, Kaizheng
    Zhang, Anbing
    ECOLOGICAL INDICATORS, 2022, 143
  • [46] Analysis of drought events and their impacts on vegetation productivity based on the integrated surface drought index in the Hanjiang River Basin, China
    Jiang, Weixia
    Wang, Lunche
    Zhang, Ming
    Yao, Rui
    Chen, Xinxin
    Gui, Xuan
    Sun, Jia
    Cao, Qian
    ATMOSPHERIC RESEARCH, 2021, 254
  • [47] Vegetation Dynamics and its Response to Climate Change in the Yellow River Basin, China
    Zhan, Cun
    Liang, Chuan
    Zhao, Lu
    Jiang, Shouzheng
    Niu, Kaijie
    Zhang, Yaling
    Cheng, Long
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [48] Evaluating river health through respirogram metrics: Insights from the Weihe River basin, China
    Gao, Xingdong
    Liu, Yanxia
    Tang, Congcong
    Lu, Meng
    Zou, Jiageng
    Li, Zhihua
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 919
  • [49] Vegetation dynamics in response to evolution of the Asian Monsoon in a warm world: Pollen evidence from the Weihe Basin, central China
    Zhao, Lin
    Lu, Huayu
    Wang, Hanlin
    Meadows, Michael
    Ma, Chunmei
    Tang, Lingyu
    Lei, Fang
    Zhang, Hongyan
    GLOBAL AND PLANETARY CHANGE, 2020, 193
  • [50] Comprehensive evaluation of the response relationship between meteorological drought and hydrological drought in the Yalong River Basin, China
    Wen, Yunliang
    Kang, Ling
    Zhou, Liwei
    Liao, Wufeng
    Guo, Xuye
    GEOMATICS NATURAL HAZARDS & RISK, 2024, 15 (01)