Investigation on the use of ensemble learning and big data in crop identification

被引:6
|
作者
Ahmed, Sayed [1 ]
Mahmoud, Amira S. [1 ]
Farg, Eslam [1 ]
Mohamed, Amany M. [1 ]
Moustafa, Marwa S. [1 ]
Abutaleb, Khaled [1 ]
Saleh, Ahmed M. [1 ]
AbdelRahman, Mohamed A. E. [1 ]
AbdelSalam, Hisham M. [2 ]
Arafat, Sayed M. [1 ]
机构
[1] Natl Author Remote Sensing & Space Sci NARSS, Cairo, Egypt
[2] Cairo Univ, Fac Comp & Artificial Intelligence, Giza, Egypt
关键词
Big data; Crop identification; Ensemble learning; DB Framework; Apache spark;
D O I
10.1016/j.heliyon.2023.e13339
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The agriculture sector in Egypt faces several problems, such as climate change, water storage, and yield variability. The comprehensive capabilities of Big Data (BD) can help in tackling the uncertainty of food supply occurs due to several factors such as soil erosion, water pollution, climate change, socio-cultural growth, governmental regulations, and market fluctuations. Crop identification and monitoring plays a vital role in modern agriculture. Although several machine learning models have been utilized in identifying crops, the performance of ensemble learning has not been investigated extensively. The massive volume of satellite imageries has been established as a big data problem forcing to deploy the proposed solution using big data technologies to manage, store, analyze, and visualize satellite data. In this paper, we have developed a weighted voting mechanism for improving crop classification performance in a large scale, based on ensemble learning and big data schema. Built upon Apache Spark, the popular DB Framework, the proposed approach was tested on El Salheya, Ismaili governate. The proposed ensemble approach boosted accuracy by 6.5%, 1.9%, 4.4%, 4.9%, 4.7% in precision, recall, F-score, Overall Accuracy (OA), and Matthews correlation coefficient (MCC) metrics respectively. Our findings confirm the generalization of the proposed crop identification approach at a large-scale setting.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A Classifier Using Online Bagging Ensemble Method for Big Data Stream Learning
    Lv, Yanxia
    Peng, Sancheng
    Yuan, Ying
    Wang, Cong
    Yin, Pengfei
    Liu, Jiemin
    Wang, Cuirong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (04) : 379 - 388
  • [22] Uncovering the Nature of Urban Land Use Composition Using Multi-Source Open Big Data with Ensemble Learning
    Tu, Ying
    Chen, Bin
    Lang, Wei
    Chen, Tingting
    Li, Miao
    Zhang, Tao
    Xu, Bing
    REMOTE SENSING, 2021, 13 (21)
  • [23] Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data
    Tong, Hao
    Nikoloski, Zoran
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 257
  • [24] Crop Management Using BIG DATA
    Sayad, Younes Oulad
    Mousannif, Hajar
    Le Page, Michel
    2015 INTERNATIONAL CONFERENCE ON CLOUD TECHNOLOGIES AND APPLICATIONS (CLOUDTECH 15), 2015, : 300 - 305
  • [25] A Comparative Investigation on the Use of Cloud Computing for Big Data Analytics
    Lew, Wei Chun
    Rana, Muhammad Ehsan
    Hameed, Vazeerudeen Abdul
    PROCEEDINGS OF THE 2022 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2022), 2022,
  • [26] ElStream: An Ensemble Learning Approach for Concept Drift Detection in Dynamic Social Big Data Stream Learning
    Abbasi, Ahmad
    Javed, Abdul Rehman
    Chakraborty, Chinmay
    Nebhen, Jamel
    Zehra, Wisha
    Jalil, Zunera
    IEEE ACCESS, 2021, 9 : 66408 - 66419
  • [27] CTELC: A Constant-Time Ensemble Learning Classifier Based on KNN for Big Data
    Tarawneh, Ahmad S.
    Alamri, Eman S.
    Al-Saedi, Najah Noori
    Alauthman, Mohammad
    Hassanat, Ahmad B.
    IEEE ACCESS, 2023, 11 : 89791 - 89802
  • [28] Landslide Susceptibility Mapping: Machine and Ensemble Learning Based on Remote Sensing Big Data
    Kalantar, Bahareh
    Ueda, Naonori
    Saeidi, Vahideh
    Ahmadi, Kourosh
    Halin, Alfian Abdul
    Shabani, Farzin
    REMOTE SENSING, 2020, 12 (11)
  • [29] Multi-step forecasting for big data time series based on ensemble learning
    Galicia, A.
    Talavera-Llames, R.
    Troncoso, A.
    Koprinska, I.
    Martinez-Alvarez, F.
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 830 - 841
  • [30] Data analytics for crop management: a big data view
    Chergui, Nabila
    Kechadi, Mohand Tahar
    JOURNAL OF BIG DATA, 2022, 9 (01)