Angle sum of polygons in space

被引:1
|
作者
Siegerist, Fritz [1 ]
Wirth, Karl [2 ]
机构
[1] Obere Buhlstr 21, CH-8700 Kusnacht, Switzerland
[2] Carmenstr 48, CH-8032 Zurich, Switzerland
关键词
D O I
10.4171/EM/461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is examined for which angles sums a polygon in space exists.
引用
收藏
页码:41 / 43
页数:3
相关论文
共 50 条
  • [21] REGULAR POLYGONS IN EUCLIDEAN-SPACE
    VANDERBLIJ, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 345 - 352
  • [22] On the moduli space of polygons in the Euclidean plane
    Kapovich, M
    Millson, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1995, 42 (02) : 430 - 464
  • [23] A SEMIRING ON CONVEX POLYGONS AND ZERO-SUM CYCLE PROBLEMS
    IWANO, K
    STEIGLITZ, K
    SIAM JOURNAL ON COMPUTING, 1990, 19 (05) : 883 - 901
  • [24] The Milnor–Totaro Theorem for Space Polygons
    Alan S. McRae
    Geometriae Dedicata, 2001, 84 : 321 - 330
  • [25] On the moduli space of polygons with area center
    Hazama, Fumio
    JOURNAL OF ALGEBRA, 2018, 497 : 219 - 269
  • [26] Solid Angle Sum of a Tetrahedron
    Katsuura, Hidefumi
    JOURNAL FOR GEOMETRY AND GRAPHICS, 2020, 24 (01): : 29 - 34
  • [27] Angle-side properties of polygons inscribable in an ellipse
    Jahangiri, Jay
    Segal, Ruti
    Stupel, Moshe
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2022, 53 (07) : 1973 - 1982
  • [28] Area bounds of rectilinear polygons realized by angle sequences
    Bae, Sang Won
    Okamoto, Yoshio
    Shin, Chan-Su
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 83 : 9 - 29
  • [29] Area Bounds of Rectilinear Polygons Realized by Angle Sequences
    Bae, Sang Won
    Okamoto, Yoshio
    Shin, Chan-Su
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 629 - 638
  • [30] Adaptive sum and difference beams angle measurement method at subarray level based on feature space
    Cao Y.-H.
    Zeng L.
    Wang Y.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (05): : 1735 - 1744