Freestanding and Consecutive Intermixed N-Doped Hard Carbon@Soft Carbon Fiber Architectures as Ultrastable Anodes for High-Performance Li-Ion Batteries

被引:13
|
作者
Wang, Peng-Fei [1 ,2 ]
Li, Ying [1 ]
Tian, Shu-Hui [1 ,2 ]
Wang, Jian-Cang [1 ,2 ]
Qiu, Feilong [4 ]
Zhu, Yan-Rong [2 ]
Yi, Ting-Feng [1 ,2 ]
He, Ping [3 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Pro, Qinhuangdao 066004, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Ctr Energy Storage Mat & Technol, Collaborat Innovat Ctr Adv Microstruct,Jiangsu Ke, Nanjing 210093, Peoples R China
[4] East China Normal Univ, Sch Integrated Circuits, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CAPACITY; NANOFIBERS;
D O I
10.1021/acs.energyfuels.3c02775
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Freestanding N-doped hard carbon fibers and consecutive intermixed N-doped hard carbon@soft carbon composite fibers were successfully prepared by a simple electrospinning technique that used polyacrylonitrile and coal tar pitch as precursors. The electrochemical properties of these N-doped carbon fibers as anode materials for Li-ion batteries are studied. The prepared freestanding N-doped carbon fiber can be directly used as the anode without adding any binder and collector. The addition of coal tar pitch as a soft carbon source can reduce environmental pollution, improve the utilization of secondary resources, and improve the electrical conductivity of carbon fibers. Especially, intermixed N-doped hard carbon@soft carbon fibers with diameters of 200-300 nm were synthesized by electrospinning, followed by carbonization at 800 degrees C (CCNF-800), which displayed the best electrochemical performance among all samples. The high reversible capacity and ultrastable cycling stability can be ascribed to the reduced charge-transfer resistance and improved Li+ diffusion coefficient of CCNF-800 caused by a modification of coal tar pitch-based soft carbon. Ex situ X-ray diffraction (XRD) patterns also confirm that CCNF-800 possesses high structural stability and reversibility during cycling. This work provides an effective approach for the design of high-performance carbon-based electrodes and offers a new pathway to reduce dependence on fossil fuels.
引用
收藏
页码:15170 / 15178
页数:9
相关论文
共 50 条
  • [31] One-step synthesis of ZnO/N-doped carbon/Cu composites for high-performance lithium ion batteries anodes
    Duan, Junfei
    Yuan, Song
    Zhu, Chao
    Chen, Zhaoyong
    Zhang, Guanhua
    Duan, Huigao
    Li, Lingjun
    Zhu, Zhiying
    SYNTHETIC METALS, 2017, 226 : 39 - 45
  • [32] Cowpea-like N-Doped Silicon Oxycarbide/Carbon Nanofibers as Anodes for High-Performance Lithium-Ion Batteries
    Huang, Xiao
    Christopher, Benedict
    Chai, Simin
    Xie, Xuefang
    Luo, Shizhou
    Liang, Shuquan
    Pan, Anqiang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02): : 1677 - 1686
  • [33] N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries
    Zhao, Taolin
    Zhang, Xinlei
    Liu, Zezheng
    Gu, Qingyuan
    Jin, Xiaoyu
    Xie, Saihu
    Liu, Shuai
    ELECTRONIC MATERIALS LETTERS, 2024, 20 (03) : 317 - 325
  • [34] N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries
    Taolin Zhao
    Xinlei Zhang
    Zezheng Liu
    Qingyuan Gu
    Xiaoyu Jin
    Saihu Xie
    Shuai Liu
    Electronic Materials Letters, 2024, 20 : 317 - 325
  • [35] In situ grown graphitic carbon/Fe2O3/carbon nanofiber composites for high performance freestanding anodes in Li-ion batteries
    Zhang, Biao
    Xu, Zheng-Long
    Kim, Jang-Kyo
    RSC ADVANCES, 2014, 4 (24) : 12298 - 12301
  • [36] High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes
    Xuewei Zhao
    Yizeng Wu
    Yunsong Wang
    Huaisheng Wu
    Yawei Yang
    Zhipeng Wang
    Linxiu Dai
    Yuanyuan Shang
    Anyuan Cao
    Nano Research, 2020, 13 : 1044 - 1052
  • [37] High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes
    Zhao, Xuewei
    Wu, Yizeng
    Wang, Yunsong
    Wu, Huaisheng
    Yang, Yawei
    Wang, Zhipeng
    Dai, Linxiu
    Shang, Yuanyuan
    Cao, Anyuan
    NANO RESEARCH, 2020, 13 (04) : 1044 - 1052
  • [38] Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries
    Suo, Liyao
    Zhu, Jiahao
    Shen, Xueyang
    Wang, Yizhou
    Han, Xiao
    Chen, Zhongqiang
    Li, Yi
    Liu, Yurong
    Wang, Dan
    Ma, Yanwen
    CARBON, 2019, 151 : 1 - 9
  • [39] Ferroelectricity enhances ion migration in hard carbon anodes for high-performance potassium ion batteries
    Li, Rui
    An, Keyu
    Ouyang, Hao
    Li, Heng
    Zhang, Yanyan
    Tang, Yuxin
    Liu, Jilei
    Chen, Shi
    NANOSCALE, 2025, 17 (10) : 5981 - 5992
  • [40] N-Doped Carbon Modifying MoSSe Nanosheets on Hollow Cubic Carbon for High-Performance Anodes of Sodium-Based Dual-Ion Batteries
    Liu, Beibei
    Liu, Yangjie
    Hu, Xiang
    Zhong, Guobao
    Li, Junwei
    Yuan, Jun
    Wen, Zhenhai
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (31)